M o BA Machine Learning

Journal Tor Biomedical Imaging

CTSpinelK: A Large-Scale Dataset for Spinal Vertebrae Segmenta-
tion in Computed Tomography

Yang Deng 123, Ce Wang 12, Yuan Hui 12, Qian Li 2, Jun Li ?, Shiwei Luo 4, Mengke Sun !, Quan Quan !, Shuxin Yang !,
You Hao 12, Pengbo Liu 1, Honghu Xiao %, Chunpeng Zhao 5, Xinbao Wu 5, S. Kevin Zhou 123

1 Key Lab of Intelligent Information Processing of Chinese Academy of Sciences, Institute of Computing Technology,
Chinese Academy of Sciences, Beijing, 100190, China

2 Suzhou Institute of Intelligent Computing Technology, Chinese Academy of Sciences, Suzhou, 215028, China

3 School of Biomedical Engineering, Division of Life Sciences and Medicine, University of Science and Technology
of China, Hefei, Anhui, and also with the Center for Medical Imaging, Robotics, Analytic Computing & Learning
(MIRACLE), Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, Jiangsu,
China

4 Department of Radiology, Guangzhou First People's Hospital, School of Medicine, South China University of
Technology, Guangzhou, 510006, China

5 Beijing Jishuitan Hospital, Beijing, 100035, China

Abstract

Spine-related diseases have high morbidity and cause a huge burden of social cost. Spine imaging is an essential tool for
noninvasively visualizing and assessing spinal pathology. Segmenting vertebrae in computed tomography (CT) images
has always been the base of quantitative medical image analysis for clinical diagnosis and surgery planning of spine
diseases. Current publicly available annotated datasets on spinal vertebrae are small in size. Due to the lack of a large-
scale annotated spine image dataset, the mainstream deep learning-based segmentation methods, which are data-driven,
are heavily restricted. In this paper, we introduce a large-scale spine CT dataset called CTSpinelK, curated from multiple
sources for vertebra segmentation, which contains 1,005 CT volumes with over 500,000 labeled vertebrae slices and
11,172 vertebrae belonging to different spinal conditions. Based on this dataset, we conducted several spinal vertebrae
segmentation experiments to set the first benchmark. We believe that this large-scale dataset will facilitate further
research in many spine-related image analysis tasks, including but not limited to vertebrae segmentation, labeling,
3D spine reconstruction from biplanar radiographs, and image superresolution and enhancement. Our dataset are
publically available at https://xnat.health-ri.nl/data/archive/projects/africai_miccai2024_ctspinelk
and https://github.com/MIRACLE-Center/CTSpinelk.
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1. Introduction the spine consists of 7 cervical vertebrae (C1-C7), 12 tho-
racic vertebrae (T1-T12), 5 lumbar vertebrae (L1-L5), 1
he spine is an important part of the musculoskele- sacral vertebra, and 1 caudal vertebra. Note that people
T tal system, sustaining body mobility and protecting are containing L6 (resulting from sacral lumbarization) or
the spinal cord, the most important neural pathway losing L5 (resulting from lumbar sacralization) with a rare

in the body (Cai et al., 2020; Sekuboyina et al., 2020). occurrence in a population.
From top to bottom along the trunk of the human body, Each vertebra is at risk of disease due to bearing the
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D. Lumbar sacralization (red arrow)

B. Thoracic and lumbar vertebrae

E. Sacral lumbarization (yellow arrow)

C. Metal artifact

F. Lumbar disc herniation (green arrow)

Figure 1: Spine CT image examples with various conditions.

load of the human body (Farugqi et al., 2018). Spine-related
diseases, including degenerative changes, spinal inflamma-
tion, spinal tumors, spinal tuberculosis, and spinal infec-
tion, have a high morbidity and cause a huge burden of
social cost. In clinical practice, common spinal diseases
include mainly degenerative diseases of the spine and disc
herniation (Balériaux and Neugroschl, 2004). Degenerative
diseases of the spine common in the elderly include cervical
spondylosis, lumbar spondylosis, and thoracic spinal steno-
sis. Disc herniation includes cervical disc herniation that
involves the cervical spine, thoracic disc herniation that
involves the thoracic spine, and common lumbar disc her-
niation, among which lumbar disc herniation is the most
common. Lumbar degenerative diseases are also the most
common in the clinic, with lumbar spinal stenosis, lumbar
spondylolisthesis, and lumbar instability. Treatment varies
with the disease entity, and the clinical scenario can be
nonspecific (Li et al., 2015).

Spinal imaging via computed tomography (CT), mag-
netic resonance imaging (MRI), radiography, ultrasound,
positron emission tomography (PET), and other radiologic
imaging modalities is essential for noninvasively visualiz-
ing and assessing spinal pathology. Computational meth-
ods support and enhance a physician's ability to utilize
these imaging techniques for diagnosis, noninvasive treat-
ment, and intervention in clinical practice. Analysis al-
gorithms developed in the field of computer vision, com-
puter graphics, signal processing, and machine learning
have been adapted to analyze spinal images (Li et al.,
2015). Conventionally, CT is preferred to study the spine

due to a high bone-soft tissue contrast. There are diverse
image appearance variations due to differences in vertebral
position, metal artifacts and spinal diseases, etc., challeng-
ing the analysis algorithms. Fig. 1 gives some examples of
these various conditions.

Spinal or vertebral image segmentation in CT is crucial
in all applications regarding automated quantification of
spinal morphology and pathology. Over the recent years,
deep learning has achieved remarkable success in various
medical imaging applications (Zhou et al., 2021, 2019) and
many automated spine image segmentation approaches have
been proposed (Lessmann et al., 2019; Payer et al., 2020).
However, all these approaches are data-dependant and have
either been validated on private datasets or small pub-
lic datasets. Considering SpineWeb !, a popular archive
for multi-modal spine data, it lists only two CT datasets:
CSI2014 (Yao et al., 2012) and xVertSeg (Korez et al.,
2015), both of which only contain dozens of CT scans.
Therefore, those approaches are heavily restricted. To ad-
dress the concerns of large-scale data availability, Sekuboy-
ina et al. (Sekuboyina et al., 2020) organized the Large
Scale Vertebrae Segmentation Benchmark(VerSe) as a chal-
lenge in conjunction with the International Conference on
Medical Image Computing and Computed Assisted Inter-
vention (MICCAI) 2019 and MICCAI 2020. With VerSe'19 2,
they released into the public domain a diverse dataset of
160 spine multi-detector CT scans with 1,735 vertebrae

1. http://spineweb.digitalimaginggroup.ca/
2. https://verse2019.grand-challenge.org/
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(120 seen CT scans and 40 hidden CT scans). For VerSe'20 3,

the upgraded version of VerSe'l9, they released 300 CT
scans, the largest public spine CT dataset to date. These
two datasets provide the ground truth of each vertebra and
are currently the most used dataset for vertebrae segmen-
tation. Nonetheless, these datasets are still small. Further,
most CT scans from VerSe'l9 and VerSe'20 datasets are
‘cropped’, only containing a small area of the spine and
abandoning other information about surrounding organs.
To advance the research in spinal image analysis, we
hereby present a large-scale and comprehensive dataset:
CTSpinelK. We collect and annotate a large-scale spinal
vertebrae CT dataset from multiple domains and different
manufacturers, totaling 1,005 CT volumes (over 500,000
labeled slices and over 11,000 vertebrae) of diverse ap-
pearance variations. We carefully design an exquisite and
unified annotation pipeline to ensure the quality of anno-
tations. To the best of our knowledge, our CTSpinelK
dataset is the largest publicly available annotated spine CT
dataset. We evaluate the dataset's quality by conducting
benchmark experiments for vertebrae segmentation.

2. The CTSpinelK Dataset

2.1 Data Collection

To build a comprehensive spine image dataset that repli-
cates practical appearance variations, we curate a large-
scale CT dataset of spinal vertebrae from the following
four open sources.

COLONOG. This sub-dataset comes from COLONOG-
RAPHY dataset related to a CT colonography trial (John-
son et al., 2008). We randomly select one of the two
positions (we will open source the codes used for selec-
tion), which have similar information for each patient in
our dataset. There are 825 CT scans, and they are in a
Digital Imaging and Communication in Medicine (DICOM)
format.

HNSCC-3DCT-RT. This sub-dataset contains three-
dimensional (3D) high-resolution fan-beam CT scans col-
lected during pre-, mid-, and post-treatment using a Siemens
16-slice CT scanner with a standard clinical protocol for 31
head-and-neck squamous cell carcinoma (HNSCC) patients
(Bejarano et al., 2008). These images are in a DICOM for-
mat.

MSD T10. This sub-dataset comes from the 10th Med-
ical Segmentation Decathlon Simpson et al. (2019). To at-
tain more slices containing the spine, we select task03_liver
dataset consisting of 201 cases. These images are in a Neu-
roimaging Informatics Technology Initiative (NIfTI) format
(https://nifti.nimh.nih.gov/nifti-1).

COVID-19. This sub-dataset consists of non-enhanced

3. https://verse2020.grand-challenge.org/
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chest CTs from 632 patients with COVID-19 infections.
The images were acquired at the point of care in an out-
break setting from patients with Reverse Transcription Poly-
merase Chain Reaction (RT-PCR) confirmation for the pres-
ence of SARS-CoV-2 (Harmon et al., 2020). We pick 40
scans with the images stored in a NIfT| format.

We reformat all DICOM images to NIfTI to simplify
data processing and de-identify images, meeting contribut-
ing sites’ institutional review board (IRB) policies. More
details for those sub-datasets can be found in (Johnson
et al., 2008; Bejarano et al., 2008; Simpson et al., 2019;
Harmon et al., 2020). All existing sub-datasets are un-
der the Creative Commons Attribution-NonCommercial-
ShareAlike 4.0 International License (CC BY-NC-SA 4.0);
we will keep the license unchanged. It should be noted that
for sub-dataset task03_liver and sub-dataset COVID-19, we
only choose a part of cases from them, and in all these data
sources, we exclude those cases of very low quality. The
overview of our dataset and the thorough comparison with
the VerSe Challenge dataset can be seen in Table 1.

2.2 Data Annotation

We design a unified and rigorous labeling standard and
pipeline before annotation because medical image annota-
tion is a highly time-consuming and subjective task. The
annotation pipeline is shown in Fig. 2.

To reduce the annotation workload, we first use the
public dataset from VerSe'19 and VerSe'20 Challenges to
train a segmentation network using the nnUnet algorithm
(Isensee et al., 2021). As mentioned earlier, most of the
VerSe Challenge samples are 'cropped’, abandoning the in-
formation about surrounding structures such as organs.
Therefore, we selected cases with complete CT images
(without cropping) and the same image spacing between
images and their corresponding ground truth, totaling 41
cases that could be used. Then, for an image to be anno-
tated, we invoke the trained segmentation model to predict
segmentation masks and invite some junior annotators to
refine the labels based on the prediction results. All these
refined labels by junior annotators are checked by two se-
nior annotators for further refinement. If the senior an-
notator finds it challenging to determine the annotations,
these data will be sent to one of the trained spine sur-
geons, whose image-reading experience averages 12 years.
Finally, all of these annotated labels undergo a random
double-check by coordinators to ensure the final quality of
annotations.

If there exist any wrong cases in double-check, they
are corrected by annotators. The human-corrected anno-
tations and their corresponding images are then added to

1. https://verse2019.grand-challenge.org/
2. https://verse2020.grand-challenge.org/
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Figure 2: The proposed annotation pipeline.
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Table 1: Overview of our large-scale CTSpinelK dataset. Ticks[v'] in the table refer to the fact that this dataset
contains some special cases with sacral lumbarization or lumbar sacralization, and we list their IDs in the open
source. 'Tr\Ts_pu\Ts_pr’' donates training\test_public\test_private. We exclude the metal-artifact cases due
to the difficulty of labeling them.

. Dataset name VerSe'19,20 [v] COLONOG [v] HNSCC-3DCT-RT MSD T10 [v] COVID-19 CTSpinelK [v]
# of patients(n) 41 784 31 150 40 1005

# of labeled vertebrae(n) 511 8022 443 2105 602 11172

# of Tr\Ts_pu\Ts_pr(n) - 480\152\152 20\5\6 90\30\30 20\10\10 610\197\198
# of cervical vertebrae(n) 17 4 217 132 66 419

# of thoracic vertebrae(n)
# of lumbar vertebrae(n)

# of sacral lumbarization

# of lumbar sacralization

Mean spacing(mm)

Mean size

Age

Manufacturer

Source and Year

285

194

8

3
(0.81+.1, 0.81+.1, 0.88+.16)

(512, 512, 640:197)
56.2 + 17.6
Siemens,GE, Philips, Toshiba
URL2 2019,2020

4039
3911
16
9

(0.75+.08, 0.75+.08, 0.81+.16)  (1.09+.14, 1.09+.14, 2.0)

(512, 512, 542:58)
56.7 + 6.1 years
Siemens,GE, Philips, Toshiba
(Johnson et al., 2008)

226
0
0
0

(512, 512, 202:£19)
64.3 + 12.8 years
Siemens
(Bejarano et al., 2008)

1198
744
1
2
(0.77+.1, 0.77+.1, 1.55+1.22)
(512, 512, 478+264)
Unknown
Unknown
(Simpson et al., 2019)

479
57
0
0
(0.79+£.09, 0.79+.09, 4.5:+1.34)
(512, 512, 93+76)
Unknown
Unknown
(Harmon et al., 2020)

(0.76+.11, 0.76+.11, 1.10+.94)
(512,512,504+155)

the training data to retrain a more powerful model. To
speed up the annotation process, we update the database
every 100 cases and retrain the deep learning model. The
process is iterative until the annotation task is finished.
The whole annotation process is operated with ITK-SNAP
(Yushkevich et al., 2006a) software. Segmentation masks
are also saved in a NIfTI format. In total, we have anno-
tations for 1005 CT volumes.

2.3 Usage Notes

The data within this work is licensed under the CC BY-
NC-SA 4.0 International License. The data can be freely
downloaded and used for your own research purposes, but
we kindly ask investigators to cite this paper in their publi-
cations. The data are suitable for visualization in a variety
of software, including 3D Slicer (Yushkevich et al., 2006b)
and ITK-SNAP (Yushkevich et al., 2006a).

2.4 Code availability

We provide the Python scripts and our trained model on
GitHub !, which can serve as a starting point for the com-
munity to march on future development based on our CT-
SpinelK dataset. All the datasets were uploaded to the
XNAT 2 platform following MICCAI 2024 AFRICAI Imag-
ing Repository White Paper (Starmans and Tsirikoglou,
2024).

3. Benchmarking Experiment

Based on CTSpinelK, we use a fully supervised method to
train a deep network for spinal vertebrae segmentation to
establish a benchmark. In recent years, the nnUnet model
has achieved better results than other methods in many
medical image segmentation tasks and has become the ac-
knowledged baseline in medical image segmentation Isensee
et al. (2021). nnUnet is essentially a U-Net Ronneberger

1. https://github.com/MIRACLE-Center/CTSpinelK
2. https://xnat.bmia.nl/data/archive/projects/africai_miccai2024_ctspinell
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et al. (2015), but with specific network architecture, de-
sign parameters, and training parameters self-adapted to
the dataset’s characteristics, together with powerful data
augmentation. Therefore, we choose nnUnet as the bench-
marking model for vertebrae segmentation. Due to our
dataset’s huge amount of high-resolution 3D images, we
use the 3D full-resolution U-net architecture. More details
for the nnUnet model can be seen in Isensee et al. (2021).

3.1 Experimental Setup

Data Split. Our dataset contains 1005 3D CT volumes
(on average, each scan has 504 slices and 11 labeled verte-
brae) with over 500,000 labeled vertebrae slices (size of
512x512). The CTSpinelK dataset is separated into a
training dataset (610 subjects), a public test dataset (197
subjects), and a private test dataset (198 subjects). More
details about the data split can be seen in Table 1. Aiming
to compare the domain differences between our annotated
dataset and the VerSe Challenge datasets, we use the 41
public cases from the VerSe Challenges as Test_VerSe.
Evaluation Metrics. Every vertebra (from C1 to L6) is
labeled with integer values from 1 to 25. Here, we use two
ubiquitous metrics prevalent in the medical image segmen-
tation domain: (i) Dice Coefficient (DSC). DSC is com-
puted per label: 2|Ax B|/(|A|+|B|), where A is the set of
foreground voxels of a certain label, and B is the predicted
mask. (ii) 95th percentile Hausdorff distance (HD95) in
mm. HD measures the local maximum distance between
the two surfaces constructed from the ground truth and
predicted segmentation map at the 95th percentile.
Implementation Details. We train the nnUnet model for
1,000 epochs, keeping the training configuration, such as
the learning rate and data augmentation, etc., the same as
the original settings in reference (Isensee et al., 2021). Due
to the limit of computing sources, we use all folds rather
than run five-fold cross-validation while training. The ex-
periments are implemented using Pytorch on an RTX 3090
GPU. The training time for the last round is around 15
days.

3.2 Results
3.2.1 Quantitative Results.

We calculate the two metrics of each vertebra, and the
results are reported in Table 2. On the one hand, our ex-
perimental results are close to those reported in reference
(Sekuboyina et al., 2020) with the same model (nnUnet),
verifying the high quality of our annotations. On the other
hand, Table 2 shows it is difficult to segment the diseased
vertebrae (the DSC of L6 is almost 0). Specifically, the
existence of L6 confuses the model, resulting in prediction
dislocations (see the last row in Fig. 4). Thus, our labeled
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dataset, which contains many L6 cases, is very valuable for
the diseased vertebrae segmentation (we have stated those
cases that are hard for annotation in the readme.txt file).
Table 2 illustrates that the model trained with our anno-
tations can achieve good performance on our CTSpinelK
dataset but a much worse performance on the VerSe Chal-
lenge datasets, which explains there is an obvious domain
gap between our annotated dataset and the public dataset.
We infer the reason is that the COIONOG dataset is based
on an empty stomach and colon, confusing the deep learn-
ing model by the changes of air content in the abdomen
(see Fig. 3). Therefore, our annotations are a good com-
plement to the existing datasets.

3.2.2 Qualitative results.

Some visualization results are presented in Fig. 4, where
we can observe that the baseline model can achieve excel-
lent segmentation results. Nevertheless, some failed pre-
dictions occur when spinal diseases exist, especially sacral
lumbarization and lumbar sacralization. Besides, the im-
age's resolution of Z direction is closely related to the re-
sults, and a lower resolution leads to worse results. Main-
taining a reasonable performance for a low resolution is
a research challenge. Image superresolution (Peng et al.,
2020) might be worth exploring.

4. Conclusion

We collect and annotate a large-scale spine CT dataset,
including 1,005 CT scans with over 11,000 vertebrae. Fur-
thermore, we validate our dataset using several benchmark-
ing segmentation experiments. We will have more experi-
ments in the future. We believe this work will help stimu-
late further research on spine-related conditions, including
vertebrae segmentation, labeling, and 3D spine reconstruc-
tion from biplanar radiographs.
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Table 2: The DSC and HD95 (in mm) results. The Mean of Vertebrae indicates the average of each vertebra (multi-
class), and the Mean of Spine indicates the average of the whole spine (binary classification).

Label Test_public | Test_private | Test_VerSe Label Test_public | Test_private | Test_VerSe
DSC/HD95 | DSC/HD95 | DSC/HD95 DSC/HD95 | DSC/HD95 | DSC/HD95
C1 .951/1.55 .957/1.34 .446/1.69 T7 .881/4.43 .764/5.98 .400/8.67
C2 974/1.15 | .975/1.22 | .923/1.20 T8 856/6.96 | .772/6.23 | .395/8.74
C3 .934/8.73 .945/7.55 .605/1.32 T9 .949/1.76 .925/3.18 .597/6.33
Ca .946/1.90 .608/3.65 .613/0.95 T10 .952/1.59 .951/1.85 .813/3.83
C5 .573/2.43 .726/3.13 .231/0.95 T11 .959/1.49 .961/1.81 .887/3.36
Cé .802/4.51 .824/2.38 .121/1.07 T12 .931/1.49 .965/1.73 .889/1.00
c7 .930/2.18 .899/2.16 .228/4.04 L1 .965/1.27 .883/1.76 .925/2.34
T1 .952/1.60 .927/2.36 .623/2.53 L2 .965/1.50 .913/1.91 .902/4.83
T2 .960/1.43 .932/2.59 .883/2.36 L3 .963/1.61 .952/2.05 .830/7.17
T3 .955/1.64 .798/7.47 .817/4.14 L4 .965/2.32 .945/2.61 .795/8.94
T4 899/3.83 | .831/3.64 | .723/6.44 L5 969/1.49 | .943/2.45 | .723/10.31
T5 .681/6.67 .830/4.90 .614/9.05 L6 0/66.21 0/80.33 0/45.16
T6 .814/5.20 .762/5.99 .483/9.21
Mean of Vertebrae | .869/5.40 | .840/6.41 | .619/6.23 | Mean of Spine | .985/1 [ .984/1 | .929/3.08

VerSe'

COLONOG VerSe'

COLONOG VerSe' COLONOG

Figure 3: The difference between the COLONGO dataset and VerSe'dataset.
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This work was conducted in accordance with the Decla-
ration of Helsinki. The CTSpinelK dataset presented in
this study is a derivative data resource constructed by cu-
rating and standardizing data from four publicly available
datasets;: COLONOG, HNSCC-3DCT-RT, MSD T10, and
COVID-19. We confirm that the original studies involv-
ing human participants for these constituent datasets were
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and HNSCC-3DCT-RT datasets were obtained from The
Cancer Imaging Archive (TCIA), where all data are de-
identified and collected with necessary ethical approvals
and informed consent (or waiver of consent) as detailed in
their original publications (Johnson et al., 2008; Bejarano
et al.,, 2008). The MSD T10 and COVID-19 datasets
were accessed via their respective public challenges or open
repositories, consistent with the ethical standards described
by their original curators (Simpson et al., 2019; Harmon et
al., 2020). All data utilized in the creation of CTSpinelK
were fully anonymized and de-identified prior to our access.

We strictly complied with the original data usage licenses
and terms of use for each source. No new human subjects
were recruited for this study, and no attempt was made to
re-identify any individuals.
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