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Abstract
One of the key impediments for developing and assessing robust medical imaging algorithms is limited access to large-scale
datasets with suitable annotations. Synthetic data generated with plausible physical and biological constraints may
address some of these data limitations. We propose the use of physics simulations to generate synthetic images with
pixel-level segmentation annotations, which are notoriously difficult to obtain. Specifically, we apply this approach to
breast imaging analysis and release T-SYNTH, a large-scale open-source dataset of paired 2D digital mammography
(DM) and 3D digital breast tomosynthesis (DBT) images. Our initial experimental results indicate that T-SYNTH
images show promise for augmenting limited real patient datasets for detection tasks in DM and DBT. Our data and
code are publicly available at: https://github.com/DIDSR/tsynth-release.
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1. Background

Responsible for approximately two million new cases and
over six hundred thousand deaths in 2022 alone (Sung
et al., 2021), breast cancer remains a prominent global
health concern, and is expected to account nearly one-third
of all newly diagnosed cancers among women in the United
States (DeSantis et al., 2016). According to the most
recent report from International Agency for Research on
Cancer (Bray et al., 2024), it is one of the most widespread
cancers diagnosed worldwide, both in the number of cases
and associated deaths. Consequently, medical imaging
techniques are indispensable for screening, diagnosis, and
further research into the disease. Historically, the most
common imaging technique for breast cancer screening is
digital mammography (DM), in which a 2D x-ray projection
of a compressed breast is taken. Digital breast tomosyn-
thesis (DBT), a pseudo-3D imaging technique, has been
increasingly adopted, demonstrating improved screening

performance (Asbeutah et al., 2019; Sprague et al., 2023).

The development of algorithms for segmenting, detect-
ing, or classifying structures of interest (e.g., cancerous
lesions) within these images is desirable for improving both
patient outcomes as well as workflow efficiency. A limiting
factor to developing data-driven algorithms, however, is the
access to representative datasets with appropriate annota-
tions. Collecting representative medical imaging data is
challenging due to cost, patient privacy regulations, and
other constraints, but obtaining appropriate annotations is
even more taxing, since annotators must have specialized
domain knowledge. The labeling process itself is laborious
due to the high resolution and fine details typically present
in these images. Very few DM and DBT datasets are
publicly available. Furthermore, the cohort characteristics
and amount of information included in these datasets are
highly variable, which limits the robustness of their applica-
tion. Only a fraction of publicly-available datasets contain
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Figure 1: Summary of T-SYNTH: a) Knowledge-based process for simulating paired synthetic digital mammography
(DM) and digital breast tomosynthesis (DBT) examples. b) Synthetic T-SYNTH data, which includes varying lesion
sizes, lesion densities (left), and tissue masks (right). c) Utility of T-SYNTH, which includes comparing performance of
AI models for lesion detection in different subgroups (left) and augmenting existing training data with T-SYNTH for
better detection in patient breast images (right).

pixel-level annotations for relevant tissues, since pixel-level
annotations typically require a time-consuming, costly, and
laborious annotation process conducted by a specialist.
Breast Image Analysis Tasks Most AI applications in
breast image analysis focus on the task of mass detection
(annotating bounding boxes over regions of interest) and
segmentation. Mass detection is often studied because of
its direct applicability in Computer Aided Diagnosis (CAD)
style software, because of the improved diagnostic capa-
bilities provided by such models. Mass detection and seg-
mentation in DM and DBT images is especially valuable
for reducing clinical workloads (Zhang et al., 2023; Raya-
Povedano et al., 2021). Mass detection and segmentation
tasks often occur together, since segmentation models may
contain a separate bounding box detection step, where any
predicted regions of interest (ROIs) are classified by le-
sion presence/properties and then further segmented by the
model, as in a Mask R-CNN (He et al., 2017). Alternatively,
a model such as a U-Net can segment findings directly (Ron-
neberger et al., 2015). Regardless of the model used, AI
techniques have been applied to the task of segmentation

and detection in both DM Salama and Aly (2021) and
DBT modalities (Bai et al., 2021), albeit with varying suc-
cess, occasionally being prone to false-positive predictions
or over-fitting (Zhang et al., 2023). AI analysis of non-mass
breast tissues, such as fibroglandular and adipose tissues,
remains under-explored, despite the utility of these tissues
to identify potentially cancerous regions (Zhu et al., 2017;
Tiryaki and Kaplanoğlu, 2022), leading to more precise di-
agnostics (Lam et al., 2000). To the best of our knowledge,
there exist only a few works in segmenting non-lesion breast
tissues (Yamamuro et al., 2022), and among them, only
two use deep learning methods (Tiryaki and Kaplanoğlu,
2022; Menegatti Pavan et al., 2016). This scarcity is due,
at least in part, to the severe dearth of annotations for
these tissues in publicly available datasets (see Appendix
for a summary of existing datasets).
Synthetic Data A potential way to mitigate data scarcity
and class imbalance is to utilize synthetic data generation.
Employing generative AI to produce these data, however,
poses several shortcomings. First, the synthesized ground
truth information is limited by what is captured in the ob-
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served data (Badano et al., 2023). Limitations stem from
both the imaging system (for example, tissue orientations
that cannot be differentiated because they lie along the
system’s null space) and human annotators (imperfect seg-
mentation masks or bounding boxes). Secondly, generative
models can perpetuate biases that exist within the data,
marginalizing underrepresented demographics and fringe
cases (Zack et al., 2024). Ironically, synthetic data are
most needed in instances where these biases exist. Finally,
even when data restrictions are ignored, the finite expres-
sivity and imperfect training process of the model itself
results in considerable errors. For example, Kelkar et al.
(2023) found that generative adversarial networks trained
on simulated medical images failed to match their training
sets in several key clinically relevant features. A recent
work by Shumailov et al. (2024) also demonstrated that
generative models trained over generations of synthetic data
compounded errors and led to ‘model collapse’.

Our dataset relies on knowledge-based (KB) models
which inherently incorporate domain expertise (“knowledge”
of physics and biology), which are used to procedurally cre-
ate realistic images and annotations. Although KB models
require rigorous domain-specific knowledge and intensive, re-
alistic simulation, the pre-image ground-truth characteristics
of a sample (for example, the underlying breast phantom)
are precisely known. This allows for subgroup analyses, con-
trolled comparison of different scan procedures, and control
of dataset balance. Here, for example, we demonstrate how
our KB data can analyze detection performance among
different mass sizes and densities, information that is not
available from patient data.

2. Summary

In this project, we demonstrate how knowledge-based (KB)
models can be used as a source of synthetic data containing
bounding box and pixel-level annotations for breast tissues
in DM and DBT. We publicly release this dataset to ac-
celerate AI development in medical imaging applications.
The model we use, developed by Graff (2016), consists of
multiple components (glandular and adipose tissue, skin,
ligaments, ducts, veins and arteries), and allows the inser-
tion of lesions (see Fig. 1). By manipulating the properties
of each component during the virtual rendering process,
we can generate a variety of richly annotated examples.
This ability is unique to the data generation models that
decouple multi-scale components of the patient anatomy
and sensor, unlike generative approaches that learn from
imaging data alone Badano et al. (2023) (see Sec. 1 for
more discussion). Our contributions are:
• We release T-SYNTH, a public synthetic dataset of

paired DM (2D imaging) and DBT (3D imaging) images
derived from a KB model, with pixel-level segmentation

and bounding boxes of a variety of breast tissues.
• We demonstrate how T-SYNTH can be used for sub-

group analysis. Specifically, Faster-RCNN Ren et al.
(2015) is trained for and evaluated for lesion detection
in a balanced dataset; results reveal expected trends in
subgroup performance in both DM and (C-View) DBT
(e.g., less dense lesions are harder to detect).

• We train detection models on limited patient data in
both DM and DBT (C-View), and show that augmenting
training data with T-SYNTH can improve performance.

3. Methods

The open-source Virtual Imaging Clinical Trials for Regula-
tory Evaluation (VICTRE) pipeline (Badano et al., 2018) is
used to simulate DM and DBT images with variations to
breast density and mass properties, similar to the M-SYNTH
dataset (Sizikova et al., 2022). The resulting datasets can
be used for downstream AI analysis as discussed in Sec. 4.1.

3.1 Phantom Generation

Controlled settings and their factors for phantom generation
include: breast density: fatty, scattered, heterogeneous,
and dense; lesion density: 1.0, 1.06, and 1.1 times the
density of glandular tissue and lesion diameter: 5, 7, and
9 mm. 150 breast phantoms with lesions were generated
for each factorial combination except for 9 mm lesions in
heterogeneous and dense breasts, due to the smaller size of
these denser breasts. Corresponding negative (lesion absent)
samples were also generated for each positive sample, for a
total of 9,000 images (4,500 lesion present and 4,500 lesion
absent).

Lesion Growth and Insertion Sengupta et al. (2024)
introduced a computational model for lesion growth of
breast cancer within a three-dimensional voxelized breast
model, accounting for stiffness of surrounding structures
and considering both avascular and vascular phases of tumor
development. The growth of lesions simulated with VICTRE
pipeline. During the avascular phase, the tumor growth
is limited by nutrient diffusion from surrounding tissues,
leading to high interstitial pressure at the core and eventual
necrosis due to oxygen deprivation. This triggers the release
of tumor angiogenesis factors, promoting new blood vessel
formation and transitioning the tumor into the vascular
phase.

The growth dynamics are modeled using advection-
reaction-diffusion equations. The model calculates intersti-
tial tumor pressure and incorporates oxygen as a primary
nutrient, influencing cell metabolism, angiogenesis, and
metastasis. The tumor cells’ proliferation is guided by local
tissue stiffness, with softer tissues offering less resistance,
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thereby promoting tumor expansion in these regions. For
imaging, the generated lesion models are incorporated into
fatty breast models using voxel replacement techniques.
The approach to modeling breast cancer lesion growth in
silico, enabling the simulation of realistic and biologically-
relevant lesion morphologies. Due to the model’s ability
to account for the mechanical properties of surrounding
tissues, we used it in our research.

3.2 Acquisition System Modeling

DBT Imaging DBT images are created via a replica of the
Siemens detector based on MC-GPU (Badal and Badano,
2009). DM images are produced using the GPU-accelerated
Monte Carlo x-ray transport simulation code, replicating the
Siemens Mammomat Inspiration system (matching those
from the M-SYNTH work).
C-View Images Majority of existing patient datasets are
limited to C-View images (i.e., 2D images obtained from
DBT projections) as they are less computationally intensive
to analyze. We therefore perform comparative evaluation
of T-SYNTH using lesion detection in C-View. Commercial
algorithms for synthesizing C-View images from DBT data
are proprietary. As such, we used the C-View approximation
from Klein et al. (2023), which applies a spherical sharpen-
ing filter to the 3D volume and then taking the pointwise
maximum along the compressed axis. For all instances, le-
sion bounding boxes were computed to encapsulate positive
pixels in the known lesion mask.

4. Experimental Setup

We investigate T-SYNTH as tool for subgroup analysis
in synthetic data (Sec. 5.2), augmenting limited patient
datasets and investigations into how the composition of data
affect downstream performance (Sec. 5.3). The Torchvision
implementation of Faster R-CNN was used as the detection
model, with a ResNet50 feature pyramid network pretrained
on COCO (Ren et al., 2015). Five model instances each for
DBT C-View and DM were trained and evaluated. Training
loss was the summation of the classifier/objectness and
box regression losses from the region proposal network and
R-CNN. AdamW optimizer with a learning rate of 1e-4 was
used, with a batch size of 24 images. Models were tuned
by measuring sensitivity on the validation set at a decision
threshold of 0.5, which was checked every 100 training
steps. Single V100s were used to train models through 3000
training steps for experiments with subsets of data and on
5000 training steps when we trained on all data, which took
about 5-8 hours to complete. We follow the conventions
set in M-SYNTH and analyze models trained on synthetic
data and patient data, as outlined below. Experiments are
conducted for both DM and C-View DBT.

Breast Density Train Set Val Set Test Set Total

Fatty 900/900 225/225 225/225 1350/1350
Scattered 900/900 225/225 225/225 1350/1350
Hetero 600/600 150/150 150/150 900/900
Dense 600/600 150/150 150/150 900/900
Total 3000/3000 750/750 750/750 4500/4500

Table 1: Distribution of image samples (+/-) from the
T-SYNTH dataset (DM and DBT).

4.1 Datasets

Synthetic Subgroup Analysis The subgroup factors we
analyze for detection performance are breast density (4 lev-
els), lesion density (3 levels) and lesion size (3 levels), using
300 distinct digital models (phantoms) for each possible
subgroup, see Tab. 1. Note that unlike patient data which
is unbalanced in positive and negative samples, T-SYNTH
is balanced.
Patient Data Augmentation To explore data augmenta-
tion using T-SYNTH, five detection models were trained
using only patient data, and five were trained with patient
+ synthetic data. EMBED was used as the patient (real)
dataset Jeong et al. (2023). Unfortunately, very few DBT
(all C-View) images of fatty and dense breasts with findings
are present in EMBED data. The available images were
split into a training, validation and test set, such that each
breast density was approximately represented equally in
the validation and test sets, and no patients were shared
between sets (see Appendix). Although a greater number
of DM images are available, we maintained the same split
for DM experiments for consistency.

Aside from the data used, all other training parameters
are identical to the synthetic only training. A batch size of
26 images was used; 10 of which were from T-SYNTH in
the patient + synth trials. Both methods had access to the
entire patient training set. Patient images were sampled
such that half contained at least one finding in each batch.

4.2 Evaluation

Each model is evaluated by calculating the number of
true positives (successfully detected lesions), false positives
(regions falsely declared as a lesion), and false negatives
(missed lesions) that a model outputs over the test set at
varying decision thresholds. Similar to the DBTex detection
challenge for DBT (Konz et al., 2023), a true positive was
scored if the distance between the prediction and a ground
truth boxes’ centers was less than either half of the diag-
onal length of the ground truth box or 100 pixels. Also
similar to this challenge, model sensitivity is reported in
relation to the average number of false positives per image
as a free-response receiver operator characteristic (FROC)
curve. FROC is often preferred to precision-recall in medical
screening contexts, where most exams do not contain any
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true findings, and the number of false positives per image
more directly indicates the clinical workload incurred by the
system. Finally, for each experiment, we retrain each model
five times with different random seeds, and report the mean,
minimum and maximum values of sensitivity at each FPR
rate across the five models, respectively. Finally, differences
in performance are analyzed across breast density, as well
as lesion size and density subgroups.

5. Results and Discussions

5.1 T-SYNTH Data Visualization

Sample T-SYNTH images are shown in Fig. 2. Visual
differences can be observed between synthetic DM, DBT,
and C-View images. These differences largely stem from
the distinct reconstruction algorithms used, which notably
differ from those employed with patient clinical data. De-
spite these variations, consistency in the underlying patient
anatomy remains evident across image types.

Clinically relevant and expected trends related to le-
sion visibility can also be seen. Specifically, lesions are
less distinct from the background fibroglandular tissue in
higher breast density categories. This finding aligns with
established medical literature, which notes that dense tissue
regions can either obscure lesions, particularly projections
with overlapping tissues, or mimic them. In the highest
breast density considered (last row of Fig. 2), DBT imaging
provides a clearer visualization of lesions that were otherwise
obscured by dense tissue in traditional DM images.

Similar visibility trends were observed across additional
subgroup characteristics (see Appendix): smaller lesions
consistently proved more difficult to detect, whereas smaller
but denser lesions were relatively easier to identify. Con-
sequently, T-SYNTH offers a robust paired synthetic DM
and DBT dataset whose visual trends align closely with
expectations derived from existing medical research. This
consistency enhances our confidence in the dataset’s validity
and its potential applicability for training and evaluation
purposes in breast imaging research.

In Fig. 3, we qualitatively compare lesions in the EM-
BED and T-SYNTH datasets. We find that the EMBED
bounding boxes may contain multiple lesions and may not
be as consistently labeled as the bounding boxes in the
T-SYNTH dataset.

5.2 T-SYNTH Subgroup Analysis

In Fig. 4, we report detection results using FROC curves
on models trained on synthetic data and evaluated on
different subgroups in T-SYNTH. The x-axis represents
the False Positive Rate (per image), and the Y-axis shows
Sensitivity (True Positive Rate) defined as the proportion
of correctly detected ground truth lesions. To generate

Figure 2: Example T-SYNTH images with varying breast
densities (row 1: fatty, row 2: scattered, row 3: hetero-
geneous, row 4: dense). Column 1: DM, columns 2-4:
DBT slices at quarter, half, and three-quarters of the total
volume depth, Column 5: DBT C-View.

(a) EMBED Lesions (b) T-SYNTH Lesions

Figure 3: Feature analysis of lesions in the EMBED and
T-SYNTH datasets.

these curves, each prediction was processed across a range
of score thresholds (determined via the validation set) to
compute detection outcomes. A detection was counted as
a true positive if it matched a ground truth lesion and had
not been matched previously by a higher-scoring prediction.
Detections that did not match any ground truth lesions were
counted as false positives. For each threshold, the total
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(a) DBT - Breast Density (b) DBT -Lesion Size (c) DBT -Lesion Density

(d) DM - Breast Density (e) DM - Lesion Size (f) DM - Lesion Density

Figure 4: Synthetic Only Detection Results (Free response ROC Curve) comparing performance across subgroups: breast
density, lesion size and density.

(a) Patient Data Percent. Overall (b) Replacement Overall (c) Addition Overall

(d) Patient Data Percent. Subgroup (e) Replacement Subgroup (f) Addition Subgroup

Figure 5: Patient data percentage: evaluation of when only a fraction of patient training data is available. Replacement:
evaluation of patient data with replacement of synthetic examples. Addition: evaluation of patient data and addition
synthetic examples
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number of true positives was divided by the total number
of ground truth lesions to obtain sensitivity (Se), while false
positives (FP) were averaged per image. The shaded regions
indicate the range (minimum to maximum) of sensitivity
values across readers. In both DBT and DM examples, we
find that performance improves with decreased density of
fibroglandular tissue (i.e., breast density), increased lesion
size, and increased lesion density, confirming the visual
trends (see Sec. 5.1) and the overall clinical expectation.
The spread of minimum values in DBT C-View images was
slightly higher than in DM, likely due to additional noise.
Because the analyzed subgroups are balanced and the nature
of the phantoms control for other confounding factors, we
can isolate these variables as the cause of differences in
performance, boasting a potential advantage of T-SYNTH
over patient data for subgroup analysis.

5.3 Impact of Data Composition
In this section, we evaluate the effect of data composition
(patient:synthetic) examples on performance. In contrast
to the above, we select a random subset of patient data to
ensure that the number of patient and synthetic examples
for training is fixed, but the composition of the training data
changes. In both patient and synthetic cases, 100% of data
indicates the inclusion of 800 examples: 400 with lesions
and 400 with no lesions. The test set here consists of 800
examples. As before, the FROC curves include five models,
where solid line is average among readers and shaded area
is shows the minimum and maximum, respectively. We run
three types of experiments:
• Patient data percentage: when model has only a

fraction (20%, 40%, .., 100%) of patient training data
available (Fig. 5a and Fig. 5d).

• Replacement: when a proportion of patient data is
replaced with synthetic data, e.g., patient (20%) + synth
(80%) (Fig. 5b and Fig. 5e).

• Addition: when a proportion of synthetic data is added
to the full available patient training set, e.g., patient
(100%) + synth (20%) (Fig. 5c and Fig. 5f).
From the patient data percentage experiment, we find

that average performance drops significantly when only
20% of patient data is available, but other experiments
with different data percentage 40%, 60% and 80% perform
in a similar range. For fatty and scattered breasts, there
is a drop from using only 40% of data, but for dense and
heterogeneous breasts, there is not. When a proportion of
patient data is replaced with synthetic data and compared
with the case when all patient data is present (100:0), we
find that replacing 40% to 80% of patient data results in a
marked improvement in performance over patient data only.
Finally, we evaluate how FROC performance on patient
test data (EMBED) is affected by the addition of synthetic

examples (from T-SYNTH) and find that addition of T-
SYNTH data improves performance at all levels of the image
FPR, particularly for scattered and dense breast examples
(see Appendix).

5.4 Comparisons to a Generative AI Model

We also compare the performance of T-SYNTH to stable
diffusionSDXL (Podell et al., 2023), which generates images
of 1024x1024 resolution. We generate images using this
model with and without finetuning, where finetuning is done
using the textual inversion (Gal et al., 2022) personalization
method using a subset of 16 lesions from the patient dataset.
We report results using the following controlled sets of
training data: T-SYNTH, EMBED baseline, Subset EMBED
baseline, Diffusion, and Finetuned Diffusion (see Appendix).

At a high level, the idea is to evaluate whether T-
SYNTH and diffusion can supplement positive cases (with
lesions present) which are underrepresented in the EM-
BED dataset. Our experiments indicate that both types
of synthetic images (diffusion and T-SYNTH) improve per-
formance over the under-sampled patient baseline. In the
overall performance comparison (see Fig. 6a), the diffusion
model without finetuning performs worse than T-SYNTH
while the finetuned diffusion model performs better than
T-SYNTH. Note that this is expected since T-SYNTH
distributions have not been matched to patient samples
in EMBED. Similar comparative performance trends are
observed across subgroups (see Fig. 6b), although the mag-
nitude of improvement is different across the four considered
breast densities.

6. Limitations and Future Work

A number of limitations exist with T-SYNTH as well as our
analysis, which can be improved in future iterations. First,
there is a domain gap between T-SYNTH and patient DM
and DBT images. Much of this gap is due to differences in
image reconstruction and postprocessing algorithms, which
can greatly impact background intensity, picture sharpness,
and tissue contrasts. It is important to mitigate these
differences as best as possible, although this is challenging
because commercial algorithms that are proprietary. Shifts
can be addressed either by adjusting KB parameters, or
domain shift mitigation techniques (Billot et al., 2023; Liu
et al., 2022). There is also room for improvement in the
lesion model used in T-SYNTH, which does not currently
capture. We followed a similar generation methodology as
that of M-SYNTH dataset (Sizikova et al., 2022) to enable
a direct comparison between c-view and mammography,
which can be further improved.

In addition, patient datasets, including EMBED, feature
complex annotations of findings that are not limited to just
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(a) Overall Performance

(b) Breast Density Subgroup Performance

Figure 6: Comparison of T-SYNTH, diffusion and finetuned
diffusion synthetic data supplementation.

masses. For example, classifications and focal asymmetries
are noted, and these findings are often classified by their
suspected severity via the BIRADs scale. Thus, our model
can be expanded in future work to include other important
abnormalities such as calcifications, as well as an improved
lesion model that captures diversity of both expression and
cancer severity that is seen in patient datasets.

Finally, future work can also expand our analysis to the
3D DBT images in T-SYNTH. Currently, a robust public
dataset of 3D DBT images for comparison, with rich an-
notations such as breast density classifications, is lacking
(further highlighting the need for synthetic data). Addi-
tionally, while our preliminary findings noted improvement
in detection performance on patient data when training
data was augmented, there is substantial variation in results

between test trials. This is likely due to the relatively small
test and validation sets, which are limited by the relatively
few number of fatty and dense breast samples containing
findings.
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7. Appendix

7.1 Additional T-SYNTH Visualizations

In Fig. 7, we include examples of T-SYNTH images with
varying lesion densities. In Fig. 8, we include examples of
T-SYNTH images with varying lesion sizes.

Figure 7: Example T-SYNTH images with varying lesion
densities, as measured relative to fibroglandular density (row
1: 1.0, row 2: 1.06, row 3: 1.1). Column 1: DM, columns
2-4: DBT slices at quarter, half, and three-quarters of the
total volume depth, column 5: DBT C-View.

7.2 Dataset Splits

In Tab. 2 and Tab. 3, we provide a distribution of image
and patient samples from the EMBED dataset. In Tab. 4,
we provide a distribution of patient samples from the T-
SYNTH dataset (the corresponding image samples table
can be found in the main paper). The difference across
patient and images samples is that the same patient may
contain multiple images (e.g., from different time points).

Breast Density Train Set Val Set Test Set Total

Fatty 53/8614 34/34 29/29 116/8977
Scattered 630/33812 35/35 38/38 703/33885
Hetero 660/33391 34/34 38/38 732/33463
Dense 33/4888 34/34 31/31 98/4953
Total 1346/80705 137/137 136/136 1649/81278

Table 2: Distribution of image samples (+/-) from the
EMBED dataset (DM and DBT).

Figure 8: Example T-SYNTH images with varying lesion
sizes (row 1: 5mm, row 2: 7mm, row 3: 9mm). Column
1: DM, columns 2-4: DBT slices at quarter, half, and
three-quarters of the total volume depth, column 5: DBT
C-View.

Breast Density Train Set Val Set Test Set Total

Fatty - - - -
Scattered - - - -
Hetero - - - -
Dense - - - -
Total 723/8334 73/0 78/0 874/8334

Table 3: Distribution of patient samples (+/-) from the
EMBED dataset (DM and DBT).

Breast Density Train Set Val Set Test Set Total

Fatty 100/100 25/25 25/25 150/150
Scattered 100/100 25/25 25/25 150/150
Hetero 100/100 25/25 25/25 150/150
Dense 100/100 25/25 25/25 150/150
Total 400/400 100/100 100/100 500/500

Table 4: Distribution of patient samples (+/-) from the
T-SYNTH dataset (DM and DBT). Examples with same
phantom but different lesion size or lesion density are treated
as the same patient.
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7.3 Additional FROC Analysis on Data Replacement

Finally, in Fig. 9 we evaluate the effect of different patient-
to-synthetic training data ratios on detection performance,
measured by the area under FROC (FROC-AUC). For each
group, green bars represent models trained on partial patient
training data relative to the full patient training dataset
(800 images, consisting of 400 examples with lesions and
400 examples without lesions). Orange bars represent mod-
els trained on a mix of patient and synthetic training data
which also has 800 images, but contains proportions (pa-
tient:synthetic) of patient and synthetic data. Blue bars
show performance of models trained on the full patient
dataset. We find that replacing nearly 60% of patient data
with synthetic examples achieves the same average level of
performance as using the full patient training dataset.

Figure 9: Comparison of FROC AUC scores across different
real-to-synthetic training data ratios. Each bar represents
the average performance across five runs. The blue bar -
100% patient data is included in each group for reference.
The green bar is different proportion of patient data and
orange is replacement in different proportion with T-SYNTH
data.

7.4 Comparison of DM and DBT

If we compare detection results on DM and DBT (see
Fig. 10), we find that the corresponding results from DM,
while having slightly lower and more variant performance,
are generally consistent with the trends in DBT. Synthetic
data appears to generate a slightly larger performance im-
provement in DBT compared to DM (e.g., compare scat-
tered and dense subgroups).

7.5 Table of Public Breast Image Datasets

Finally, we provide a summary of existing public breast
image datasets (both patient and synthetic) in Tab. 5 for
additional information.

7.6 Diffusion Experiments
The diffusion model is run using an auto-inpainting pipeline
from Hugging Face, where an image without a lesion, a
circular mask, and a prompt (“draw a lesion”) are presented
to the model, which outputs a breast image with the lesion
drawn in the specified location. This approach allowed
us to generate both images and bounding boxes for each
generated lesion.

• T-SYNTH: positive (300 from T-SYNTH + 100 from
EMBED), negative (400 from EMBED)

• EMBED baseline: positive (400 from EMBED), nega-
tive (400 from EMBED)

• Subset EMBED baseline: positive (100 from EMBED),
negative (400 from EMBED)

• Diffusion: positive (300 from un-finetuned diffusion, 100
from EMBED), negative (400 from EMBED)

• Finetuned Diffusion: positive (300 from finetuned dif-
fusion, 100 from EMBED), negative (400 from EMBED)
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(a) DM Overall Result (b) DBT Overall Result

(c) DM Breast Density Subgroups (d) DBT Breast Density Subgroups

Figure 10: Comparison of Digital Mammography (DM) and Digital Breast Tomosynthesis (DBT) Free-response ROC
curve on real test set for detection models trained with real (EMBED Jeong et al. (2023)) and synthetic (T-SYNTH)
data. Solid blue and orange lines represent average sensitivity across trials; spread captures minimum and maximum
sensitivity.
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Patient datasets
Dataset DM DBT Bi-RADS Density # cases # images Image categories Pop Seg. Annotation

BCS-DBT (Buda et al., 2020) No Yes Yes (5) No 5,060 22,032

Cancer
benign

actionable
normal

USA 336 mass bboxes
99 arch.distortions bboxes

ADMANI (Frazer et al., 2022) Yes No No No 629,863 4,411,263a Normal
recall

Several
nations

Annotations provided
where available

EMBED (Jeong et al., 2023) Yes Yes Yes (6) Yes (4)m 116,000 3,383,659b
Invasive cancer

non-invasive cancer
high risk

USAc 40,000 lesion-level ROIs
with annotations h

CMMD (Cui et al., 2021) Yes No No No 1,775 3,712 Benign, malignant China None
INBreast (Moreira et al., 2012) Yes No Yes Yes (3) 115 410 Benign, malignant, normal Portugal 105 annotated images
OPTIMAM (Halling-Brown et al., 2020) Yes No No No 172,282 3,072,878 Normal, interval cancers, benign, malignant UK 7,143 bboxes of lesions
VinDR (Nguyen et al., 2022) Yes No Yes (6) Yes (4) z 5,000 20,000 Normal, interval cancers, benign, malignant UK 20,000 bboxes of lesions
CBIS-DDSM (Lee et al., 2017) Yes No Yes (5) Yes (4) z 6,775 10,239 normal, benign, malignant USA 1,644 ROIs of masses h

BCDR (Lopez et al., 2012) Yes No Yes (5) Yes (3) l 1,010 3,703

masses
microcalcifications

calcifications
stromal distortions

architectural distortions
axillary adenopathy

USA 2,335 lesion segmentations

DMID (Oza et al., 2023) Yes No Yes (6) Yes (3) l 510 510

mass-benign
mass-malignant

calcifications
architectural distortion

asymmetry

India 510 pixel-level annotations (masks) of masses

CSAW (Dembrower et al., 2019) Yes No No No 499,807 ≈2,000,000 cancerous, healthy Sweden 1891 tumor pixel-level annotations
KAU-BCMD (Alsolami et al., 2021) Yes No Yes (5) Yes (4) z 1,416 5,662 normal, benign, and malignant Saudi Arabia segmentations and bboxes for 5,662 masses
Sheba (Zamir et al., 2021) Yes No No No 19 42 isolated, clustered microcalcifications Korea 42 masks of microcalcifications
UC-Davis (Sarno et al., 2021a) No Yes No No 150 150 N/A USA 150 pixel-level lesion annotationsj

MIAS Mammography (Strand, 2022) Yes No No Yes (3)l 416 416 normal, benign, malignant USA 416 ROIs of masses i

NYU [Not publicly available] Yes No Yes (3) Yes (5) z 229,426 1,001,093 cancerous, healthy USA 8,080 pixel-level mass segmentations
Synthetic datasets

Dataset DM DBT Bi-RADS Density # cases # images Image categories Pop Seg. Annotation
Sarno (Sarno et al., 2021b) Yes Yes – – – 150d Normal – No
VICTRE (Badano et al., 2018) Yes Yes – – – 2986 Negative, positive cohort – Yese

CSAW (Pinaya et al., 2023) Yes No – – – 100k high, medium, low masking levels – Yesn

M-SYNTH (Sizikova et al., 2024) Yes Nog – – – 45,000 Negative, positive cohort – Yesf

T-SYNTH (Ours) Yes Yesg – – – 9,000 Negative, positive cohort – Yesf

a subset available for the RSNA Cancer Detection AI challenge.
b 20% available via AWS; contains annotated lesions.
c equal representation of African American and White
d 150 uncompressed, 60 compressed images
e four breast densities, same lesions across all positive cohort
f 3 lesion densities, 3 lesion sizes, 4 breast densities, 5 different doses
g A corresponding DBT image dataset will be provided in a future release of the dataset.
h location of centroid + radius. Saved as a white circle directly onto a copy of the original mammogram, generating a screen save image.
i location of centroid + radius.
j contains computational digital breast phantoms. Each image voxel was classified in one out of the four main materials presented in the field of view: fibroglandular tissue, adipose tissue, skin tissue, and air
l fatty, fatty-glandular, dense-glandular
m high density, isodense, low density, fat containing
n diffusion-based generator
z almost entirely fatty (1), scattered areas of fibroglandular density (2), heterogeneously dense (3), extremely dense (4), unknown (5)

Table 5: Summary of existing breast imaging datasets. The proposed T-SYNTH dataset is the largest synthetic paired
DM-DBT dataset available.
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