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Abstract
Bone marrow reticulin fibrosis is associated with varied benign as well as malignant hematological conditions. The
assessment of reticulin fibrosis is important in the diagnosis, prognostication and management of such disorders. The
current methods for quantification of reticulin fibrosis are inefficient and prone to errors. Therefore, there is a need
for automated tools for accurate and consistent quantification of reticulin. However, the lack of standardized datasets
has hindered the development of such tools. In this study, we present a comprehensive dataset that comprises of
201 Bone Marrow Biopsy images for Reticulin (BoMBR) quantification. These images were meticulously annotated
for semantic segmentation, with the focus on performing reticulin fiber quantification. This annotation was done by
two trained hematopathologists who were aided by Deep Learning (DL) models and image processing techniques that
generated a rough automated annotation for them to start with. This ensured precise delineation of the reticulin fibers
alongside other cellular components such as bony trabeculae, fat, and cells. This is the first publicly available dataset
in this domain with the aim to catalyze advancements the development of computational models for improved reticulin
quantification. Further, we show that our annotated dataset can be used to train a DL model for a multi-class semantic
segmentation task for robust reticulin fiber detection task (Mean Dice score: 0.92). We use these model outputs for
the Marrow Fibrosis (MF) grade detection and obtained a Mean Weighted Average F1 score of 0.656 with our trained
model. Our code for preprocessing the dataset is available at https://github.com/AI-in-Medicine-IIT-Ropar/
BoMBR_dataset_preprocessing.
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1. Background

R eticulin fibers are an integral component of the
bone marrow’s extracellular matrix, providing essen-
tial support for hematopoiesis, the process of blood

cell formation. These fibers are visualized using silver im-
pregnation techniques, revealing a delicate network of thin,
uniform strands. The organized reticulin meshwork serves
as a structural framework within the bone marrow environ-
ment. However, in several pathological conditions (Norén-
Nyström et al., 2008; Fu et al., 2014; Buesche et al., 2008),
there is an increase in reticulin deposition within the bone

marrow, contributing to myelofibrosis. Separating and de-
coding the structural complexity of reticulin fibers, which
are stained and examined under a microscope, from the
Bone Marrow Trephine (BMT) images is labor-intensive
and time-consuming (for an example of a BMT image and
the corresponding complex reticulin fiber structure refer to
Fig. 1). This process is also subjective and prone to the
presence of inter-observer variability (Teman et al., 2010)
and can, therefore, differ across pathologists (Lucero et al.,
2016). Accurate grading of reticulin fibrosis is crucial and
inconsistencies impact the accurate diagnosis, prognostica-
tion and treatment decisions.
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Figure 1: Sample of a BMT image from our dataset. A: Original unsegmented image B: Annotated image with reticulin
fibers labeled in blue color

In the past two decades, the advancements in obtaining
digital images in the pathology coupled with the develop-
ments in deep neural network models for computer vision
related tasks have led to multiple tasks in pathology being
automated (for a review, please see (Amerikanos and Ma-
glogiannis, 2022)). Consequently, there have been previous
attempts for developing computational models for reticulin
detection from BMT images. However, reticulin fibers ex-
hibit variations in color intensity and distribution, making
accurate segmentation and quantification difficult (Lucero
et al., 2016). For example, Teman et al. (2010) developed
a computer-aided solution that utilizes color deconvolution
techniques to isolate the reticulin fibers from the image
and then manually grade the MF. This work, however, ig-
nores the complex polychromatic nature of reticulin fibers
and is not fully automated thereby having a manual grad-
ing component.Lucero et al. (2016) quantified bone MF in
a mouse model of myelofibrosis. However, its applicability
to human bone marrow biopsies and more complex disease
presentations requires further validation and adaptation.
More recently, Ryou et al. (2023) introduced Continuous
Indexing of Fibrosis (CIF), a DL approach aimed at enhanc-
ing the quantification and monitoring of fibrosis in using
bone marrow samples. CIF utilizes a continuous 0-1 scale,
departing from the traditional discrete 0-3 grading system,
thereby improving fibrosis assessment in Myeloproliferative
Neoplasms (MPN). However, a potential drawback is that
this new grading scale may not align with established clini-
cal practices, posing challenges for clinicians in interpreting
and applying the results in standard clinical settings. As
a result, these computer-aided approaches may not pro-
vide reliable and reproducible results, further highlighting

the need for alternative methods that can overcome these
limitations and offer more robust assessments of bone MF.

It should be mentioned that we were unable to locate
any publicly accessible annotated datasets for the quantifi-
cation of reticulin in BMT pictures. Ryou et al. (2023)
made use of a private dataset that wasn’t accessible to the
general public.

2. Summary

We propose the Bone Marrow Biopsy images for Reticulin
(BoMBR) dataset containing 201 BMT pixel-wise anno-
tated images. Besides the pixel-wise annotation masks, we
give information regarding the grade of MF, percentage
cellular area covered by reticulin, and the average value of
the elongation factor of the reticulin fibers in the image.
The percentage of cellular area covered by reticulin indi-
cates differences in the amount of area covered by reticulin
fibers across different grades, while the elongation factor
helps understand changes in the shape of reticulin fibers as
the grade increases. This is by far the first such publicly
available resource for annotated BMT images that focuses
on reticulin fibrosis both globally and in the context of the
Indian subcontinent. Our dataset aims to facilitate the ef-
fective and objective quantitative measurement of reticulin
fibers, moving beyond the current qualitative, observer-
dependent scoring systems. Beyond its primary application
in the grading of myelofibrosis, the dataset may also serve
as a benchmark for further studies. This includes its po-
tential to assist hematopathologists in the classification of
MPN, assessment of disease progression, and quantitative
monitoring of the effects of myelofibrosis reversal in pa-
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tients, particularly in the context of clinical trials and novel
targeted therapies.

Further, to show the utility of the dataset, we train a
DL model and show that the BoMBR dataset can help in
training precise segmentation models that can further help
in determing the MF grade of the BMT biopsy images.
The BomBR dataset is preprocessed, split into train and
test sets (stratified for the MF grade) and ready for use
by researchers for computational processing. The code
for designing the corresponding DL models is available on
https://github.com/AI-in-Medicine-IIT-Ropar/
BoMBR_based_models/tree/main.

The following sections of this paper provide a com-
prehensive overview of our work. We begin by discussing
the significance and limitations of the presented dataset
(section 3). Next, we highlight potential applications and
license related details of the dataset in machine learning
and clinical imaging (section 4). Following this, we de-
scribe the methodologies used for data collection (section
5.1) and the detailed annotation process (section 5.2). Fi-
nally, we demonstrate the use of the BoMBR dataset for
predicting fibrosis grades, showcasing the potential of our
dataset in aiding clinical diagnosis and research (section 6).

3. Discussion

The annotated dataset of BMT biopsy images presented in
this study provides a valuable resource for quantitative as-
sessment of fibrosis severity in hematological disorders. By
leveraging automated segmentation followed by expert an-
notation, we have created a comprehensive dataset cover-
ing a range of MF grades (MF-0 to MF-3). This dataset in-
cludes detailed annotations for reticulin fibers, bony trabec-
ulae, fat regions, and cellular region, facilitating in-depth
analysis of bone marrow pathology.

Despite the strengths of this dataset, there are some
limitations to consider. Firstly, although the annotated
dataset will aid in the quantification of reticulin fibers,
it does not identify the presence of collagen fibrosis and
osteomyelosclerosis, which are important components of
the overall fibrous matrix. Secondly, the dataset has not
been prospectively validated for use in clinical laboratory
settings, including its applicability to whole slide images
(WSI). Additionally, how clinicians and hematopathologists
should interpret the resultant data has not been studied.

Additionally, further research is being conducted to test
these models using Whole Slide Images in clinical situa-
tions. To verify the usefulness and efficacy of these models,
prospective studies should evaluate how well they function
in actual diagnostic workflows. Multi-centric setups should
be explored to include more images and train more gener-
alizable models. In future, the dataset can be expanded to
enable the prediction of specific types of MPN and not just

the MF grade. In order to perform annotation for situations
where the trained models underperform, semi-supervised
setups for MF grade prediction should be investigated on
the DL side.

In conclusion, the annotated dataset of BMT biopsy
images represents a significant advancement in the field of
hematopathology and automated diagnostic tools. It pro-
vides a foundation for developing robust DL models capable
of accurate fibrosis grading. While acknowledging current
limitations, ongoing and future research efforts will con-
tinue to refine and validate these models, ultimately aiming
to improve clinical decision-making and patient outcomes
in bone marrow evaluation.

4. Resource Availability

4.1 Potential Use Cases

Diagnostic Assistance: Clinicians can leverage DL mod-
els trained on this dataset to assist in the quantitative as-
sessment of fibrosis grade in MPN and other disease condi-
tions. This approach may be particularly valuable in differ-
entiating between MPN, such as the cellular phase of pri-
mary myelofibrosis and essential thrombocytosis. Further-
more, it could aid in the early prediction of the risk of MPN
patients progressing to the overt myelofibrosis phase. The
detection of microfoci of fibrosis, evidenced by increased
reticulin deposition, may also facilitate the identification
of patchy areas of involvement in patients with lymphoma
or metastasis.

Prognostic Assessment: The dataset can enhance
prognostic evaluations by providing objective measure-
ments of fibrosis severity, which is critical for predicting
disease progression and patient outcomes. In patients un-
dergoing a repeat bone marrow biopsy, the dataset can be
used to quantitatively reassess fibrosis, thereby predicting
responses to therapies/interventions. Furthermore, mini-
mal responses in patients receiving treatments or novel tar-
geted therapies, which might be visually underrepresented,
can be documented more precisely. This is particularly
crucial in the context of clinical trials, where accurate as-
sessment of therapeutic efficacy is essential.

Treatment Planning: Accurate assessment of fibrosis
levels can guide treatment decisions, can significantly im-
prove treatment planning by providing objective and quan-
titative measurements of fibrosis severity, enabling more ac-
curate evaluations of disease progression and patient out-
comes. Clinicians can use this data to tailor treatment
plans, monitor responses to therapies, and make timely ad-
justments, particularly in chronic conditions like MPN. Ad-
ditionally, the ability to detect minimal responses to novel
therapies, especially in clinical trials, enhances the assess-
ment of treatment efficacy. By supporting personalized
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medicine and reducing reliance on subjective interpreta-
tions, this approach ensures more consistent and effective
patient management.

4.2 Licensing

The dataset will be hosted on an open-source platform for
access by public. It may be obtained by submission of
an online application form and acceptance of a Data Use
Agreement. The application must include the investiga-
tor’s institutional affiliation and the proposed uses of the
BoMBR dataset.

4.3 Ethical Considerations

All procedures performed in studies involving human par-
ticipants were per the ethical standards of the institutional
and/or national research committee and with the 1964
Helsinki Declaration and its later amendments or compara-
ble ethical standards. The approval from the Institutional
Ethical Clearance Committee, Postgraduate Institute of
Medical Education and Research (PGIMER), Chandigarh
was obtained for conducting the study.

Subjects’ consent was taken for using their biopsy im-
ages for research purposes. Subjects were informed verbally
(in their vernacular language) about the option to opt out
of the study and only the data for those subjects who opted
in was included in the study.

5. Methods

After the initial collection and screening of the data, we
obtained the digital images for the samples. These sam-
ples were then subjected to an automated rough annotation
pipeline, followed by manual annotation by trained patholo-
gists. After manual annotation, each of the image contains
segmentation masks corresponding to each class viz. cell,
fat, bony trabeculae and reticulin fibers.

5.1 Data collection

The BMT biopsy data was acquired using standardized pro-
cedures at the Postgraduate Institute of Medical Education
and Research, Chandigarh (PGIMER). These procedures
are as per medical standards as mentioned in Bancroft’s
Theory and Practice of Histological Techniques (Suvarna
et al., 2012). After aspiration, samples underwent decal-
cification, fixation and paraffin embedding. Then biopsy
specimens were prepared for microscopic examination by
sectioning into 2-3 microns samples and staining with reti-
culin stain based on silver impregnation technique. High-
resolution digital images of stained biopsy sections were
captured using an Olympus BX53 microscope at a magnifi-
cation of 400x and 1000x. A total of 19 patients diagnosed

with MPN participated in the study. The time taken for
data collection varied depending on various factors, includ-
ing sample preparation and imaging. The time taken for
sample preparation was approximately 120 minutes. For
taking an image it takes approximately 10 seconds. The
annotation of the images depends on the MF grade and
ranges from 5 minutes to 20 minutes for MF-0 to MF-3.

In our dataset, we ensured comprehensive representa-
tion across all myelofibrosis MF grades, encompassing a
diverse range of pathological conditions. Specifically, we
included 39 images of MF-0, 47 images of MF-1, 78 im-
ages of MF-2, and 37 images of MF-3. Hemorrhages by the
leakage of blood from ruptured blood vessels into surround-
ing tissues or as bone marrow aspiration induced ones, are a
common feature observed in bone marrow pathology. Our
dataset initially comprised 202 images, but we discarded 1
image due to excessive hemorrhage, leaving us with a total
of 201 images. This dataset features 55 images exhibiting
hemorrhages, capturing its diverse manifestations within
the bone marrow environment. By incorporating a wide
range of MF grades and cellular samples, our dataset of-
fers researchers a comprehensive resource for studying the
complex interplay between fibrosis, cellular composition,
and disease progression in MPN and other disease states.
Table 1 provides a comprehensive overview of the BoMBR
dataset characteristics

Total Number of Images 201
No. of Patients 19

Age (Range) 18 - 60 Years
Gender 11 Males

Image Resolutions
(1461, 913) 1
(1920, 1200) 127
(1600, 1200) 73

Images with haemorrhage 55
MF-0 39
MF-1 47
MF-2 78
MF-3 37

Area of cells 58.19 ± 20.92%
Area of bone 9.94 ± 9.94%
Area of fat 21.71 ± 22.27%

Area of reticulin fibers 10.17 ± 6.45%

Table 1: Characteristics of the BoMBR dataset

5.2 Data annotation process

To assist in annotating our BMT biopsy specimens, we
developed a preprocessing pipeline. We use several im-
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age processing techniques to generate a preliminary rough
annotation of the image samples. This approach ensures
that pathologists do not have to begin annotations from
scratch and can focus on refining annotations, including
small details such as reticulin fibers. The final annotation
is performed manually by the hematopathologist.

5.2.1 Generating instance segmentations in the image

The annotation process for our BMT biopsy specimens be-
gan with automated annotation using the Segment Any-
thing Model (SAM) (Kirillov et al., 2023). SAM is a state-
of-the-art model designed to generate masks for various
components in images, providing initial uncategorized in-
stance segmentation masks for the image. SAM gave us
multiple uncategorized masks for all the structures present
in the bone marrow samples. These masks were then fur-
ther refined and categorized based on specific rules tailored
to the features of the bone marrow components. Details
about the hyperparameters used for the SAM model can
be found in section B of the supplementary material.

5.2.2 Bony trabeculae identification

Bony trabeculae are typically visualized in the orange color
range in medical images due to their specific staining prop-
erties. This characteristic color made it feasible to use im-
age processing approaches for the identification of bony
trabeculae.

The process began with the application of color-based
segmentation techniques to masks generated by the SAM
(Kirillov et al., 2023). The identification process employed
two distinct color ranges: orange and black. The orange
color range ([0, 50, 20] to [100, 255, 255]; HSV color
space), was utilized to capture hues typically associated
with bony structures in medical images. Concurrently, a
black color range ([0, 0, 0] to [30, 30, 30]) helped in ex-
cluding the background or non-bony regions from consid-
eration.

For each mask derived from the segmentation process,
the algorithm calculated the proportion of pixels falling
within the orange color range relative to the total area
(excluding the black pixels). Masks where the proportion
of orange pixels exceeded 45% of the non-black area were
identified as containing bony trabeculae.

5.2.3 Fat Detection

To identify masks for fat, we began by isolating non-black
areas in the masks. This was done using a black color range
([0, 0, 0] to [30, 30, 30], HSV color space). Given that
fat regions have consistent color, we then calculated the
standard deviation of pixel values in the non-black areas of
the masks. Regions where the average standard deviation
of pixel intensities value was less than or equal to 20 were

identified as fat due to their consistent color characteristics.

5.2.4 Cell Segmentation

The remaining masks, excluding bony-trabeculae and fat,
were categorized as cell regions. This broad category en-
compassed various cellular structures (including reticulin)
in the bone marrow samples. Once the different masks
were assigned categories, we aggregated all the masks by
superimposing them on top of each other, thereby obtain-
ing a single mask for each category.

5.2.5 Reticulin Identification

The process of identifying reticulin fibers involved manual
thresholding of the combined cell mask using OpenCV’s
cv2.threshold function (Bradski, 2000). Due to vary-
ing illumination levels in the images, the threshold values
were varied manually (150 to 180) in order to maximize
reticulin identification. However, since a single constant
threshold value was insufficient to comprehensively iden-
tify reticulin, we applied a two-step process to minimize
false positives. We utilized the fact that reticulin fibers are
elongated, fiber-like structures, whereas nuclei are circular
and have low elongation values close to 0. We, thus, used
the elongation factor to distinguish between reticulin and
nuclei using the following steps:

• Bounding Box Generation: Bounding boxes were
generated around the identified components. The
elongation of each bounding box was calculated us-
ing the following formula:

Elongation = 1 − min(height, width)
max(height, width)

This formula quantified the degree of elongation
based on the dimensions of the bounding box. If
either the width or height of the bounding box was
zero, indicating a non-elongated structure, the elon-
gation was set to zero.

• Contour Filtering: Contours with elongation values
exceeding a threshold of 0.25 were categorized as
reticulin. This step ensured that only elongated
structures, characteristic of reticulin fibers, were re-
tained while excluding non-relevant components like
nuclei, which are typically circular.

After generating the reticulin mask, it was subtracted
from the original cell mask to produce a cell mask without
reticulin. The final set of annotations included masks for
reticulin, fat, bony trabeculae, and cells without reticulin.

5.3 Annotation by Experts
Despite the advantages of automated annotation, the
rough annotations could not be considered precise due to
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Figure 2: Flowchart representation of automatic annotations done by SAM. A: Original Image. B: Generating masks
and classifying them: Masks with pixel intensity in the orange color range are classified as bone masks, masks having
consistency in color among the remaining masks are considered as fat masks, and the remaining masks are categorized as
cell masks. C: Masks of every category are added together to form one mask per category. D: Performing thresholding
and shape filtering to isolate reticulin, resulting in a reticulin mask and a cell mask without reticulin. E: Annotations
generated using SAM and classification.

Figure 3: Procedure for annotation by experts. A: Automatic annotation using SAM and classification of masks. B:
The pathologist uses Computer Vision Annotation Tool (CVAT) for refining annotations. C: Final annotation

certain inaccuracies. For instance, the SAM encountered
challenges in generating precise masks for fat regions hav-
ing small area, due to which these occasionally got included
in the cell mask. Moreover, despite efforts to exclude them
using elongation checks, nuclei and other cellular struc-
tures close to reticulin fibers were included in the same
bounding box as reticulin fibers. To address these issues
and ensure the quality of annotations, manual verification
was essential. The manual annotation process involved
two hematopathologists who were trained on our software
for performing manual annotation. Experts reviewed each
image, refining the annotations and correcting any discrep-
ancies identified during the automated phase. Each image
was annotated by the hematopathologist taking approxi-
mately 5 to 20 minutes for its complete annotation.
Examples of images along with their expert annotations

can be found in section C of the supplementary material.
To ensure consistency and compatibility with other

tools and platforms, all annotations were converted into
Pascal VOC format. This standardized format facilitated
seamless integration with existing frameworks and en-
hanced the accessibility of the annotated dataset for further
research and development. CVAT (Sekachev et al., 2020)
was chosen for its intuitive user interface and open-source
nature, facilitated this manual annotation process.

In summary, the annotation process for the bone mar-
row biopsy images combined automated methods with
manual verification to achieve accurate and reliable an-
notations. This hybrid approach leveraged the strengths of
automated segmentation techniques while mitigating po-
tential inaccuracies through expert intervention. The re-
sulting annotated dataset, available in Pascal VOC format
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and annotated using CVAT, serves as a valuable resource
for research and development in bone marrow evaluation
and related fields.

6. Using BoMBR Dataset for Marrow Fibrosis
Grade Prediction

6.1 Motivation

MPN are a group of disorders characterized by ac-
quired mutations in hematopoietic stem cells, affecting the
MPL-JAK-STAT (Myeloproliferative Leukemia Virus-Janus
Kinase-Signal Transducer and Activator of Transcription)
signaling pathway and leading to excessive proliferation of
one or more blood cell lineages (Sabattini et al., 2021;
Gianelli et al., 2017; Rampal et al., 2014; O’Sullivan and
Mead, 2019). Despite advances in understanding MPN,
the precise mechanisms underlying the initiation and pro-
gression of MF remain poorly understood. The signifi-
cance of evaluating fibrosis levels in MPN is deeply in-
tegrated into the classification system established by the
World Health Organization (WHO) for common MPN,
including essential thrombocythemia (ET), polycythemia
vera (PV), primary myelofibrosis (PMF), and pre-fibrotic
primary myelofibrosis (pre-PMF) (Arber et al., 2016). Fi-
brosis severity plays a pivotal role in the clinical manage-
ment of MPN, with minor fibrosis (MF-1) observed in PV
linked to poorer survival outcomes, while more advanced fi-
brosis is associated with a complex karyotype (Barbui et al.,
2012; Boiocchi et al., 2013). Escalating levels of fibrosis
correspond to worsening hematological and clinical param-
eters, as well as overall prognosis (Gianelli et al., 2012;
Vener et al., 2008; Thiele and Kvasnicka, 2006). The cur-
rent method for assessing bone MF relies heavily on manual
grading by pathologists.

6.2 Dataset Preparation

The dataset was split into training and validation sets using
an 80:20 ratio, stratified across all MF grades to ensure
balanced representation giving us a split of 161 train images
and 40 validation images. For the test set, we captured an
additional 50 images from 10 additional subjects (other
than the train set) and annotated them to prevent data
leakage among subjects or from the initial dataset to the
test set.

6.3 Model Used

For the segmentation task, we used a UNet (Ronneberger
et al., 2015) model with an Xception (Chollet, 2017) back-
bone. The encoder we used was taken from Keras (Chollet
et al., 2015) and was pretrained on ImageNet (Deng et al.,
2009) weights with an input size of 512 × 512. The model

architecture included residual blocks and skip connections,
totaling 12 residual blocks and 4 skip connections. The ar-
chitecture of the decoder was adopted from Kaggle. Dice
loss was used as the loss function, while monitoring the
Dice coefficient and mean IoU. We applied dropout for reg-
ularization to enhance feature learning. We used a learning
rate of 10−4 with an AdamW optimizer, a batch size of 8,
and set the maximum number of epochs to 200.

For the classification task, we used a CNN model with
an encoder based on the Xception backbone. We used
a learning rate of 10−5 with an Adam optimizer, a batch
size of 8, and set the maximum number of epochs to 70.
The Xception model layers were frozen to retain pretrained
weights, and additional convolutional and dense layers were
incorporated for classification.

For both models, we implemented early stopping with a
patience of 10 using the TensorFlow Python library (Ten-
sorFlow, 2018), running on a NVIDIA T1000 8GB GPU.
Additionally, we utilized a learning rate scheduler with a
reduction factor of 0.8, monitoring accuracy, and allowing
a patience of 4 epochs before reducing the learning rate to
a minimum of 10−8.

It is to be noted that we performed these simulations
to show that robust models can be built on top of our
datasets performing meaningful tasks that lead to the re-
duction of clinical efforts and more accurate performance.
We, therefore, focused on building suitable model architec-
tures instead of optimizing model performances. Further
research and models can be explored to optimize the model
performance.

6.4 Results

Figure 4: Plot of the dice loss over the number of epochs
for the train and test sets for the segmentation model.

6.4.1 Segmentation

We conducted multi-class segmentation using a Xception
model pretrained on the ImageNet dataset, where we froze
the encoder weights and trained the decoder from scratch
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Figure 5: Segmentation model’s labels for a test sample. A: Sample image from the test set; B: Image with ground
truth masks overlaid on top; and C: Image with predicted segmentation masks from our trained model. Note that color
pink represents cell, red represents bone, blue represents reticulin, and green represents fat.

until the training loss converged (Figure 4). Details of
the model’s performance are summarized in Table 2. A
sample segmentation result is illustrated in Figure 5, show-
casing the model’s ability to accurately classify pixels into
4 distinct classes. The segmentation model demonstrated
robust performance, achieving a Dice score of 0.9230, indi-
cating its capability to discern meaningful patterns within
the dataset. Additionally, graphical representations of the
training and testing Dice Coefficient and mIoU over 200
epochs are provided in section D of the supplementary ma-
terial.

6.4.2 Fibrosis Grade Prediction

For fibrosis grade prediction, we propose a convolutional
neural network (CNN) architecture. The network utilizes a
pre-trained Xception encoder on ImageNet for initial fea-
ture extraction. It takes masked grayscale images of size
512 × 512, where only reticulin is present and the back-
ground is blacked out. These images are derived from
reticulin masks predicted using our segmentation model.
These extracted features undergo processing through an
additional convolutional layer with 512 filters and a 3 × 3
kernel size to refine spatial information. Subsequently,
global average pooling aggregates these refined features,
which are then passed through a dense layer comprising
128 units with ReLU activation. A dropout layer is applied
for regularization before a final dense layer with softmax ac-
tivation predicts the probabilities for the four myelofibrosis
(MF) grades. Performance metrics for this classification
task are detailed in Table 2. We found that we were able
to predict the MF grade with a mean accuracy of 87.5%
(over 5 folds). The section E of the supplementary mate-
rial contains the detailed classification report and confusion
matrix for this model.

It is to be noted that although the ground truth MF

grades were based on the consensus of two hematopathol-
ogists, they are subjective and often cases that are border-
line. Further investigation based on uncertainty quantifi-
cation methods can be performed to improve our results.

Task Metric Mean ± Std. Dev.

Segmentation Dice 0.9230 ± 0.04338
mIoU 0.8572 ± 0.07089

MF Grade
Prediction

WA F1 0.656 ± 0.0049
Accuracy 70.05% ± 0.87%

Table 2: Description of model performance across five
different random initializations. Abbreviations used:
Weighted Average (WA).
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confidentiality, and their right to withdraw at any time.
No data were collected from individuals who opted out or
declined participation. Strict patient anonymity was main-
tained throughout the process. The complete process of
data gathering, imaging, sharing and processing was done
on-premise on secure channels at PGIMER, Chandigarh
and IIT Ropar. The IEC approval is valid for three years
from the date of issuance, and the study complies with all
requirements for reporting amendments, adverse events,
and study completion as outlined by the ethics committee.
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Data availability

The dataset can be found on an open-source plat-
form for public access. We followed the rules
and regulations as mentioned in Starmans and
Tsirikoglou (2024) and uploaded the dataset on https:
//xnat.health-ri.nl/data/archive/projects/
africai_miccai2024_bombr. The dataset is also avail-
able on https://doi.org/10.5281/zenodo.13690617.
To obtain the dataset, users must submit an online ap-
plication form and accept the Data Use Agreement. The
application must include the investigator’s institutional
affiliation and the proposed uses of the BoMBR dataset.

Code Availability

The code supporting this study is publicly
available in two GitHub repositories: https:
//github.com/AI-in-Medicine-IIT-Ropar/BoMBR_
dataset_preprocessing for image annotation and
dataset conversion, and https://github.com/
AI-in-Medicine-IIT-Ropar/BoMBR_based_models
for training and inference of segmentation and classifi-
cation models. These repositories include preprocessing
scripts, training notebooks, and an end-to-end inference
pipeline. The provided code can be used to reproduce the
experiments presented in this study.
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