
Machine Learning
for Biomedical Imaging

A COCO-Formatted Instance-Level Dataset for Plasmodium Falci-
parum Detection in Giemsa-Stained Blood Smears
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Abstract
Accurate detection of Plasmodium falciparum in Giemsa-stained blood smears is an essential component of reliable
malaria diagnosis, especially in developing countries. Deep learning-based object detection methods have demonstrated
strong potential for automated Malaria diagnosis, but their adoption is limited by the scarcity of datasets with detailed
instance-level annotations. In this work, we present an enhanced version of the publicly available NIH malaria dataset,
with detailed bounding box annotations in COCO format to support object detection training. We validated the revised
annotations by training a Faster R-CNN model to detect infected and non-infected red blood cells, as well as white blood
cells. Cross-validation on the original dataset yielded F1 scores of up to 0.88 for infected cell detection. These results
underscore the importance of annotation volume and consistency, and demonstrate that automated annotation refinement
combined with targeted manual correction can produce training data of sufficient quality for robust detection performance.
The updated annotations set is publicly available via Zenodo: https://doi.org/10.5281/zenodo.17514694.
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1. Background

M alaria is a tropical disease caused by protozoan
parasites of the genus Plasmodium, which in-
fect red blood cells and are primarily transmitted

through the bites of female Anopheles mosquitoes. In hu-
mans, the disease is mainly associated with four species:
P. falciparum, P. vivax , P. malariae, and P. ovale. In re-
cent years, malaria has also been increasingly transmitted
by a fifth species, i. e., P. knowlesi . Among these five
species, P. falciparum and P. vivax are the most prevalent,
and P. falciparum is responsible for the majority of malaria-
related deaths (World Health Organization, 2024).

Most malaria infections are reported in tropical and
subtropical regions, affecting populations in low-income
countries with limited access to healthcare. Although mod-
ern treatments can effectively cure malaria, early diagnosis
remains critical and delays in detection are a major con-
tributing factor to malaria-related mortality (Sultani et al.,

2022). For parasitological diagnosis of malaria, microscopic
examination of thick and thin blood smear images is rou-
tinely performed. In addition to identifying the Plasmodium
species, light microscopy allows parasite quantification and
monitoring therapy response. Therefore, it is often pre-
ferred over molecular testing (World Health Organization,
2024). Nonetheless, the parasitological assessment of blood
smear images requires a high level of expertise, and trained
personnel might be scarce in low-resource countries or rural
areas (Poostchi et al., 2018).

Recently, machine learning-based approaches for an-
alyzing digitized blood smear images have demonstrated
promising results in parasitemia quantification (Poostchi
et al., 2018). However, these methods typically rely on
large, well-annotated datasets for effective training, mak-
ing publicly available resources particularly valuable. Most
existing work focuses on classifying individual cell patches
as infected or non-infected (Kassim et al., 2020), which
requires the prior extraction of single-cell crops. This step
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can be challenging in densely populated blood smear im-
ages and limits the applicability of such approaches in
real-world diagnostic workflows, where direct localization
and accurate quantification of infected cells are essential.
In contrast to patch-based classification approaches, ob-
ject detection architectures require datasets with detailed
instance-level annotations, typically in the form of labeled
bounding boxes. However, acquiring such detailed annota-
tions is labor-intensive and time-consuming, which limits
their availability. The cro:nihNIH dataset, comprising 965
images, is one of the largest publicly available resources
for P. falciparum detection. However, only 165 of these
images include detailed polygon-based annotations, while
the remaining 800 are limited to point annotations marking
cell centers. This sparsity limits their suitability for training
deep learning-based object detection models, which typically
require bounding box annotations.

In this work, we present a revised version of the cro:nihNIH
dataset with enhanced annotations. Using the Cellpose
framework (Pachitariu and Stringer, 2022) and manual la-
bel correction, we converted the original point annotations
into bounding box labels, which are better suited for object
detection. To validate the quality of the revised dataset,
we trained a Faster R-CNN (Ren et al., 2015) for parasite
detection, achieving an F1 score of up to 0.88 for infected
cell identification. The updated annotation set is pub-
licly available via Zenodo: https://doi.org/10.5281/
zenodo.17514694.

2. Methods

For our experiments, we generated new bounding box anno-
tations for the cro:nihNIH dataset, which contains Giemsa-
stained, thin blood smear images of P. falciparum. We
conducted a technical validation of these annotations by
training a deep learning-based object detector to identify
three cell types: non-infected red blood cells, infected red
blood cells, and white blood cells.

2.1 Data Details

The cro:nihNIH dataset (Kassim et al., 2020) is a thin-smear
malaria image dataset acquired at Chittagong Medical Col-
lege Hospital in Bangladesh and published by the National
Library of Medicine, cro:nihNational Institutes of Health
(NIH), Bethesda, MD, USA. It comprises Giemsa-stained,
thin blood smear images from 193 patients (148 infected
and 45 uninfected), with five images per patient. Each im-
age was captured using a microscope-mounted smartphone
camera at a resolution of 5 312 × 2 988 (width × height)
pixels. Annotations cover three classes: non-infected red
blood cells, infected red blood cells, and white blood cells.
Of the 965 total images, 165 include detailed polygon-based

annotations, while the remaining 800 provide only point
annotations marking cell centers. Table 1 summarizes these
subsets, hereafter referred to as NIHpolys and NIHpoints,
respectively. Figures 1a and 1b show example regions of
interest with contour and point annotations, corresponding
to the NIHpolys and NIHpoints subsets.

Table 1: Overview of the NIH dataset subsets. NIHpolys
includes detailed polygon-based labels, whereas NIHpoints
was annotated with point markers indicating cell centers.
MIRAboxes comprises revised labels for the NIHpoints dataset
with detailed bounding box annotations.

NIHpolys NIHpoints MIRAboxes
patients 33 160 160
no. of images 165 800 800
annotations contours points boxes
no. of annotations

non-infected 33 071 155 640 155 201
infected 1 142 6 810 6 805
white blood cell 51 220 220
ambiguous - - 19 592

2.2 Annotation Revision

To enable the use of the NIH dataset for training object de-
tection models, we converted the point annotations into de-
tailed bounding-box annotations. For this, we first detected
cell instances using Cellpose 2 (Pachitariu and Stringer,
2022), an open-source framework designed for robust, gen-
eralizable segmentation. Trained with a diverse dataset of
more than 70 000 cells, Cellpose offers strong performance
across a wide range of cell types and imaging modalities,
making it well suited for segmenting Giemsa-stained blood
smear images.

Following cell instance segmentation, we assigned labels
to detected cells by overlaying the original point annota-
tions. If a point annotation fell within a predicted bounding
box, that box was assigned the corresponding cell class.
However, Cellpose occasionally detected cells, which were
not annotated in the original dataset. These were often
partially visible cells at the edge of the field of view. In the
updated annotation set, these detections were labeled as
ambiguous. Figure 2 shows an example with ambiguous
cells at the border of the field of view. Overall, the updated
annotations comprise 19 592 ambiguous cells, which makes
up around 10 % of the original NIHpoints subset.

Due to its reliance on an average cell size, Cellpose
sometimes fragmented larger cells and particularly white
blood cells into multiple instances. To address this, we
manually reviewed and merged these fragmented detections.
Additionally, Cellpose occasionally misclassified artifacts or
blood platelets as cells. These false positives were also
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(a) Sample from NIHpolys (b) Sample from NIHpoints (c) Bounding box annotations

Figure 1: Different annotation types provided by the NIH dataset. (a): contour annotations, (b): point-only annotations,
(c) bounding box annotations created with Cellpose (Pachitariu and Stringer, 2022). Blue: non-infected red blood cells,
pink: infected cells, green: white blood cells, orange: ambiguous cells.

removed during manual post-processing. Figure 1c shows
a representative region of interest after bounding box de-
tection, with ambiguous cells highlighted in orange, and
the last column of Table 1 summarizes the number of cell
instances after this annotation revision.

Figure 2: During label cleaning, non-annotated cells at
the border of the field of view were labeled as ambiguous
(orange). Blue: non-infected red blood cells, pink: infected
cells, green: white blood cells.

3. Technical Validation

To validate the revised annotations, we trained a Faster
R-CNN model (Ren et al., 2015) to detect three cell classes:
non-infected red blood cells, infected red blood cells, and
white blood cells. We conducted cross-validation exper-
iments by training the model on either the NIHpolys or
the revised MIRAboxes subset and evaluating its detection
performance on the other, respectively.

3.1 Implementation Details

We employed a Faster R-CNN model (Ren et al., 2015)
with a ResNet34 (He et al., 2016) backbone, pretrained on
ImageNet (Russakovsky et al., 2015). The datasets were
split into 70 % for training and 30 % for validation. On the
NIHpolys dataset, the model was trained for 1 000 epochs
using a cosine annealing learning rate schedule with linear
warm-up over the first 50 epochs and a maximum learning
rate of 10−4. For the MIRAboxes dataset, the training time
was lowered to 200 epochs, to match the almost five-fold
size of the data subset. For optimization, the Adam opti-
mizer and standard Faster R-CNN loss functions were used.
Training patches of 1 280 × 960 pixels were sampled from
the original 5 312 × 2 988 pixel images. This resolution was
chosen to match the 4:3 aspect ratio typical of microscopy
images, while ensuring that each patch contained a suffi-
cient number of cells for effective training. The patches
were then downscaled by a factor of 2 to a final size of
640 × 480 pixels, enabling a batch size of 32 without ex-
ceeding memory constraints. To address class imbalance,
we applied a custom patch sampling strategy that over-
sampled regions containing underrepresented classes, such
as white blood cells. Model performance was monitored
using the cro:mapmean average precision (mAP) on the
validation set, and the final model was selected based on
the best validation mAP.

For inference on the full-resolution 5 312 × 2 988 pixel
images, we used the SAHI framework (Akyon et al., 2021,
2022), which performs sliding-window predictions and ap-
plies cro:nmsnon-maximum suppression (NMS) to eliminate
duplicate detections across overlapping patches. As a post-
processing step, we removed all predicted bounding boxes
with an area smaller than 2 500 pixels or larger than 140 000
pixels. These thresholds were determined based on the
minimum and maximum annotation sizes observed in the
original NIH dataset.

Training was performed on an NVIDIA A100 GPU. Ex-
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periments were implemented using the torchvision Faster
R-CNN model, with PyTorch Lightning (Falcon and The
PyTorch Lightning team, 2019) for streamlined training and
Hydra (Yadan, 2019) for configuration management.

3.2 Evaluation

For evaluation, we computed class-wise F1 scores from the
instance-level confusion matrices. Cells that were detected
by Cellpose but not labeled by human annotators (i. e., am-
biguous cells) were excluded from the evaluation. Annotated
cells that were not detected by the model were considered
cro:fn-detfalse negatives due to detection failure (FNdet),
while model predictions that were not annotated and not la-
beled as ambiguous were considered cro:fp-detfalse positives
due to detection failure (FPdet). The class-wise F1 score
for class c was computed as:

F1(c) = 2 · Prec(c) · Rec(c)
Prec(c) + Rec(c) , with (1)

Prec(c) = TP (c)
TP (c) + FPcls(c) + FPdet(c)

= Mcc∑N+1
i=1 Mic

, and (2)

Rec(c) = TP (c)
TP (c) + FNcls(c) + FNdet(c)

= Mcc∑N+1
i=1 Mci

. (3)

Here, Mij denotes the element in the i-th row and j-th
column of the confusion matrix, i. e., the number of cells
labeled as class i and predicted as class j. N is the number
of cell classes, and the (N +1)-th row and column represent
false positive (FPdet) and false negative (FNdet) detections,
respectively.

3.3 Results

Figure 3a presents the confusion matrix of the Faster R-CNN
model trained on the NIHpolys subset and evaluated on the
MIRAboxes subset, and vice versa. Results are displayed as
row-normalized percentages along with absolute cell counts.
Overall, the model performs better when trained on the
MIRAboxes and evaluated on the NIHpolys subset than the
other way round, reflected by a lower proportion of off-
diagonal entries in the confusion matrix. When training on
NIHpolys and testing on MIRAboxes, a comparably high ratio
(> 20 %) of infected cells was misclassified as non-infected,
indicating reduced recall for malaria detection. Further-
more, 81.8 % of the cells annotated as ambiguous were

(a) train: NIHpolys, test: MIRAboxes

(b) train: MIRAboxes, test: NIHpolys

Figure 3: Confusion matrices for Faster R-CNN predictions
on the NIH subsets. Each matrix shows row-normalized
percentages along with absolute cell counts. The last row
indicates cro:fpfalse positives (FPs), i. e., cell instances
detected by the model but not annotated in the dataset.
The last column indicates cro:fnfalse negatives (FNs), i. e.,
annotated cell instances that were not detected by the
model.

not detected by the model. Closer inspection of these cells
revealed that ambiguous cells were often located near the
field-of-view borders, where annotations were inconsistently
applied. Specifically, these border cells were frequently
unannotated in both, the NIHpolys and NIHpoints dataset.
This suggests a possible labeling bias, which is further illus-
trated in Fig. 4, where white arrows indicate unlabeled yet
clearly visible cells.

Table 2 summarizes the detection performance, reported
as precision, recall, and F1 scores computed from the confu-
sion matrices according to Eqs. (1) to (3). For each dataset,
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(a) Sample from NIHpolys (b) Sample from NIHpoints

Figure 4: Representative samples from NIH subsets with white arrows indicating non-annotated cells at the border of
field of view: (a) sample from the polygon subset with detailed contour annotations, (b) sample from the point subset
with spot annotations in the cell center.

training was repeated with three different random seeds,
and we report the average performance as mean ± standard
deviation (µ ± σ).

Table 2: Class-wise F1 score (µ ± σ) of detection model
trained on NIHpolys subset and evaluated on the MIRAboxes
subset and vice versa.

NIHpolys → MIRAboxes MIRAboxes → NIHpolys
Precision

non-infected cells 0.96 ± 0.01 0.97 ± 0.00
infected cells 0.91 ± 0.01 0.86 ± 0.01
white blood cells 0.90 ± 0.04 0.88 ± 0.03

Recall
non-infected cells 0.97 ± 0.01 0.99 ± 0.00
infected cells 0.77 ± 0.01 0.91 ± 0.01
white blood cells 0.92 ± 0.03 0.96 ± 0.00

F1 score
non-infected cells 0.96 ± 0.01 0.98 ± 0.00
infected cells 0.84 ± 0.01 0.88 ± 0.00
white blood cells 0.91 ± 0.04 0.92 ± 0.02

The results demonstrate high performance for the de-
tection of non-infected red blood cells and white blood cells,
with F1 scores above 90 %. Infected cells were detected
with an average F1 score of 0.84, when training on NIHpolys
and 0.88 when training on MIRAboxes, indicating good but
comparatively lower performance. The repeated training
runs demonstrate low variability, indicated by a low standard
deviation of performance results.

The performance metrics again demonstrate a superior
performance of the model trained on MIRAboxes. This
especially holds for the recall of infected cells, with average
values of 0.77 for training on NIHpolys and 0.91 for training
on MIRAboxes. This observation could be attributed to
discrepancies in labeling consistency, but also to the higher
volume of annotated instances (6 810 vs. 1 142), which
provides more diverse training examples to the model.

4. Discussion and Summary

This study presents a revised version of the NIH malaria
dataset with instance-level annotations in COCO format,
facilitating the development of deep learning-based object
detection models for the automatic detection of infected
cells. We validated these annotations by training a Faster
R-CNN to detect infected and non-infected red blood cells,
as well as white blood cells, achieving an F1 score of up
to 0.88 for the detection of infected cells. For trained mi-
croscopists, the cro:whoWorld Health Organization (WHO)
guidelines recommend a minimum recall of infected malaria
samples of 0.90 (World Health Organization, 2009), which
our system achieves on a cellular level. Therefore, the sys-
tem meets the minimum competency level required in a
diagnostic setting. Nevertheless, our analysis of ambiguous
cells revealed inconsistencies in the original annotations,
where especially at the image borders cells were not labeled
by the pathologists. However, it is difficult to tell whether
these cells were simply overlooked or not labeled on purpose
as a reliable malaria diagnosis might not be possible on
partially visible cells. This raises broader concerns about
ground truth quality in biomedical datasets likely caused by
a trade-off of labeling precision and time investment. To
the best of our knowledge, the original dataset was anno-
tated by a single expert, which can introduce a considerable
labeling bias. Future work could address this with addi-
tional manual annotation rounds with consensus labeling by
multiple experts or introducing a separate class for partially
visible cells. For evaluating the performance of machine
learning models, we recommend excluding these cells from
evaluation.

Despite the challenges associated with partially labeled
data, our results demonstrate that annotation conversion
via existing tools such as Cellpose, followed by targeted
manual curation, can yield training data of sufficient qual-
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ity to support robust model performance. This finding is
particularly relevant for resource-constrained settings where
detailed annotations are expensive or infeasible.

In addition to annotation consistency, we also observed
differences in model performance between the two subsets
of the NIH dataset, likely driven by the varying number of
annotated instances available for training. This highlights
the importance of dataset size and diversity for learning
subtle morphological features, such as the presence of ring-
stage parasites. Furthermore, our initial dataset assessment
demonstrated a high class imbalance of healthy and infected
cells. We compensated for this to some extent by employing
a customized patch sampling strategy, but in future work
dedicated augmentation strategies or class-balanced loss
functions could be integrated.

Overall, our work contributes an enhanced dataset and
a robust pipeline for parasite detection in microscopy, sup-
porting further research into automated malaria diagnosis.
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