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Abstract

We present the Trauma THOMPSON dataset and benchmarks designed to advance artificial intelligence research for real-
time decision support in emergency and austere medical environments. The dataset contains 220 unscripted egocentric
videos of five emergency procedures, including a diverse collection of "just-in-time” (JIT) life-saving interventions
performed under resource-constrained conditions. These JIT scenarios more closely reflect the realities of humanitarian
and field-based operational medicine, where standard protocols must often be adapted or creatively executed. To support
deeper visual understanding, we introduce two new layers of fine-grained annotations: object detection labels for critical
medical instruments and supplies and hand annotations to facilitate hand tracking and surgical skill assessment. These
additions enable new research directions in spatiotemporal reasoning, interaction modeling, and Al copilots that interpret
and guide complex procedures in real time. The Trauma THOMPSON dataset includes benchmark tasks in action
recognition, action anticipation, visual question answering (VQA), object detection, and hand localization. We evaluate
state-of-the-art models across these tasks, identifying current strengths and open challenges in developing robust Al for
field-deployable decision-making. The dataset is available at https://github.com/zhuoyp/TTD, and it can serve as a

foundation for building intelligent systems that assist frontline caregivers.
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1. Introduction

Providing high-quality medical care in remote, disaster-
stricken, and combat environments presents significant chal-
lenges due to limited medical expertise, scarce resources,
and unreliable connectivity (Wachs, Kirkpatrick, and Tisher-
man 2021). In these conditions, first responders often have
minimal training yet must handle complex medical cases
with constrained resources, heightening the risk of poor
patient outcomes (Stewart and Bird 2022; Shackelford et al.
2021). Furthermore, standard medical tools and resources
are frequently unavailable under remote environments, and
using daily objects to perform emergency procedures be-
comes the inevitable choice. For example, if someone is
bleeding heavily, tearing clothing to help stop the bleeding
will be the only option when medical bandages are not easily

available. Previous studies have shown that "just-in-time"
(JIT) training can improve learning and patient outcomes
(Patocka et al. 2024; Branzetti et al. 2017). However, few
data on training Artificial Intelligence (Al) assistants are
available in this domain.

Al assistants have been proposed to act as copilots
for a mentee or trainee by multiple studies (Bahl 2020; X.
Liu et al. 2018; Al-Antari 2023; Dilsizian and Siegel 2014;
Hamet and Tremblay 2017; Dinh et al. 2023; Mirchi et al.
2020; Vannaprathip et al. 2025; Caballero et al. 2025).
To train Al medical assistants for low-resource settings
and address the gap in data availability, we introduce the
Trauma THOMPSON dataset (TTD), which is a collection
of video clips with action annotations, and benchmarks
to encourage research and development of Al copilots for
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resource-constrained and emergency settings.

TTD was used as the basis for the "MICCAI 2023
Trauma THOMPSON Challenge” (Zhuo, Kirkpatrick, et al.
2025; Zhuo, W. Kirkpatrick, et al. 2025), which focused on
action recognition and action anticipation of regular emer-
gency procedures. This paper presents a comprehensive
release of the TTD and presents the following innovations
beyond our previous work. Specifically, it expands the
dataset by including JIT procedures and adding new anno-
tations for hands, objects, and visual question answering
(VQA), along with new benchmark results. To the best
of our knowledge, TTD is the first of its kind in terms of
scale, settings, challenges, and applicability. Figure 1 shows
an overview of the experimental pipeline of this study. In
summary, this paper makes the following contributions.

» We created the first egocentric view dataset of opera-
tional medicine that assist field medics to properly per-
form emergency care procedures in resource-constrained
settings. This dataset includes annotated video clips
corresponding to 5 unscripted procedures for life-saving
skills.

» The dataset contains both regular procedures performed
with standard medical tools and JIT procedures performed
with daily objects. By training on regular procedures and
testing on JIT procedures, we introduce a very challenging
scenario that tests an Al model’s complex reasoning
and understanding of medical skill transfer and domain
generalization.

= We provide benchmarks for action recognition and antici-
pation to predict the therapeutic actions required for hu-
manitarian medicine and resuscitative care. This dataset
is intended to act as an essential piece for developing
copilots for medics and first responders.

» We created secondary annotations for VQA, hand track-
ing, and object detection. We provide benchmarks for
the VQA task to illustrate how it can be potentially used
as a clinical decision support (CDS) tool to assist care-
givers through natural dialogue throughout the diagnostic
process.

2. Related Work

2.1 Egocentric activity recognition and surgical datasets

Video understanding has seen dramatic advances due to
the introduction of action classification benchmarks such
as UCF101 (Soomro, Zamir, and Shah 2012), HMDB51
(Kuehne et al. 2011), Kinetics (Kay et al. 2017), Something-
Something (Goyal et al. 2017), and AVA (Gu et al. 2017),
which mostly consist of short videos focusing on a sin-
gle action per clip and aim to recognize daily activities.

Nonetheless, these datasets may lack the spontaneity, pro-
gression, and multi-tasking that occur in real-life situations
due to their scripted nature. As a result, research has shifted
focus to first-person vision, which delivers activities from a
unique viewpoint. For instance, (Pirsiavash and Ramanan
2012) developed a dataset that includes 20 participants and
encompasses 10 hours of activities of daily living (ADL)
videos. (Yin Li, M. Liu, and Rehg 2020) created EGTEA
Gaze+ with wearable cameras, which is an egocentric ADL
dataset of 28 hours of cooking activities from 86 distinct
sessions involving 32 subjects. (Damen et al. 2018) curated
the EPIC-KITCHENS dataset, which is a large-scale ego-
centric video dataset with 100 hours of cooking actions
recorded by 32 participants.

There are multiple robotic surgery datasets for the com-
putation of proficiency, skill level, knowledge acquisition,
and performance (Gao et al. 2014; Tao et al. 2012; Gonzalez
et al. 2021). Moreover, instructional videos for life-saving
skills have been proposed for the purpose of training Al
algorithms (Gupta, Attal, and Demner-Fushman 2023).
However, such datasets were collected in controlled settings
using both simulation and planned surgical procedures.

2.2 Our work: Egocentric operational medicine dataset

Table 1 compares the TTD to common egocentric view and
medical instructional datasets and presents key metrics that
distinguish the TTD as the first egocentric view medical
instructional dataset with per-frame annotations.

The TTD has a similar structure as other egocentric
datasets for action recognition and anticipation, such as
EPIC KITCHENS (Damen et al. 2018), GTEA (Fathi, Ren,
and Rehg 2011) and EGTEA Gaze+ (Yin Li, M. Liu, and
Rehg 2020), and Charades-Ego (Sigurdsson et al. 2018),
with the following caveats. Firstly, the hands are not always
visible or distinguishable due to artificial blood, occlusions,
and multiple limbs, which makes it more challenging for de-
tection and tracking. Secondly, some of the videos are taken
outdoors and “in the wild", increasing the complexity due to
uncontrolled lighting. Thirdly, mistakes require rewinding
and re-doing, or stopping short while completing the proce-
dures, leading to a high variability in style and performance
time. Lastly, as opposed to existing datasets for surgical
guidance and instruction, which rely on a fixed set of tools
common to general surgery, our dataset is subject to emer-
gency settings, as shown in Figure 2. The performers are
first responders, medics, and surgeons, and the procedures
were often conducted using improvised tools (e.g. shirt for
a tourniquet, a pocket knife for a cricothyroidotomy) to
replicate a resource-limited setting. This poses a challenge
for algorithms that rely on object detectors as priors for
activity recognition, as the objects are not known ahead of
time in emergent settings.
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Figure 1: Overview of the experimental pipeline.

Table 1: Comparison of Trauma THOMPSON to the related egocentric and medical datasets.

dataset, and "Med" denotes medical dataset.

"Ego” denotes egocentric

Dataset Ego Med Frames No. Act Participants No. Envs
Trauma THOMPSON, 2025 v v 0.7M 162 12 15
EPIC-KITCHENS, Damen et al. 2018 v X 11.5M 149 32 32
BEOID, Damen 2014 v X 0.1M 34 5 1
GTEA, Fathi, Ren, and Rehg 2011 Ve X 0.4M 42 13 1
CMU-MMAC, Torre et al. 2008 v X 0.2M 31 16 1
ADL, Pirsiavash and Ramanan 2012 v X 1.0M 32 20 20
ESAD, Bawa et al. 2020 X ve 0.03M 21 4 4
CholecT50, Nwoye et al. 2022 X v 0.1M 100 13 13
MedVidCL, Gupta, Attal, and Demner-Fushman 2023  x v 1489 Videos 0 >100 >100
MRAO, Schmidt et al. 2021 X v 480 Videos 10 16 2
MISAW, Huaulmé, Sarikaya, et al. 2021 X v 27 Videos 17 6 1
PSI-AVA, Valderrama et al. 2022 X v 8 Videos 167 3 1
PETRAW, Huaulmé, Harada, et al. 2023 X v 150 Videos 6 4 2

3. Dataset

3.1 Procedure identification

The development of the TTD involved a team of experts
with experience in deployed settings, such as surgeons,
critical care physicians, and emergency medicine physicians,
who created a list of essential procedures for prolonged
casualty care (PCC), such as cricothyrotomy and tourniquet
application. Additionally, a focus group of 15-30 subject
matter experts (SMEs) determined a consensus on the
content and best practices for the TTD. This information
was used to identify a final list of procedures for the TTD,
which includes cricothyroidotomy, intraosseous infusion,
tourniquet, needle thoracostomy, and tube thoracostomy.
The collection of procedures and settings are described in
the following section.

3.2 Data collection

We focused on capturing natural, unscripted life-saving
intervention (LSI) procedures from the first-person perspec-
tive, which involves operating a medical tool, searching for
an item, changing one’s mind, and encountering unexpected
problems. The videos were recorded at 1080p using head-
mounted cameras (GoPro, Hero7, San Mateo, California) to
capture first-person views filmed across various simulation
models and environments. Surgeons wore the cameras on
their heads and adjusted the angle to 20-30° relative to
the forehead for optimal video collection. The hands were
centered in frame during procedures for better visualization.

The dataset was also enhanced through the inclusion
of videos capturing JIT procedures involving improvised,
non-traditional equipment. Videos were obtained of users
performing improvised tourniquets (utilizing belts or cloth-
ing and a screwdriver), tube thoracostomy (utilizing scissors
for incision and expansion of thoracostomy and a screw-
driver to guide insertion of the tube), needle cricothyroido-
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Figure 2: Examples of procedure video clips.

tomy (replacing standard incision/tube with a needle for
emergent airway management), and manual intraosseous
needle placement (when needle driver is not available or
functional).

3.3 Annotation pipeline

The annotations in the dataset consist of start timestamps,
end timestamps, and actions expressed as verb-noun pairs
for corresponding video clips. The expected output for
testing is the labels for the action, verb, and noun. Medical
professionals were responsible for annotating the data and
providing the timestamps and actions for each procedural
step. To reduce the possibility of errors in time stamping
and video segmentation, the annotations underwent peer
review.

3.4 Data quality assurance

To ensure annotation accuracies, the actions in each pro-
cedure are annotated by three medical professionals. One
person annotates and the other two people review the gen-
erated annotations. As the annotations are estimates and
no precise way to ensure an absolute timestamp for each
procedure, we propose a method to compute the annotation
accuracy. Let t, be the actual timestamp and defined as
the average of timestamps from the annotator and the re-
viewers. n,. is the number of reviewers. t,; is the timestamp
from reviewer i. t, is the timestamp from the annotator.

ty, = mgl(z;‘; tri +to). tas and tqe denote the actual

start and end of each clip. t,s and t,. denote the original
start and end by the annotator. The annotation accuracy
of each clip is computed as the overlapping time between
the original and actual timestamps divided by the actual
clip duration. To compute the overlapping time, we define
tstart = Max(tos,tas) and tepg = min(tee, tqe). The clip
accuracy p; is computed as % The average anno-
Yo (Pi*(tae—tas))

Yo (tae—tas)

tation accuracy is computed as acc =

3.5 VQA annotations

The medical VQA is derived from the egocentric video
dataset and includes additional annotations that contain
questions and corresponding plausible answers. Each ques-
tion in the secondary annotations contains 3 to 5 potential
answers. For example: Q: What limb is injured? A: Right
arm; Q: Where is the catheter insderted? A: There is no
catheter; A: Is there any bleeding? A: No.

3.6 Hand and object annotations

To annotate high-quality bounding boxes efficiently, the
human-in-the-loop approach is adopted, which combines
both manual annotation and automatic tracking. The
bounding boxes are created by manual selections of hands
and objects in the videos every 10-30 frames and automat-
ically annotated by CSRT trackers (LukeZzi¢ et al. 2018)
between selections. Left hand, right hand, and 12 medi-
cal tools are annotated. Teaching vision language models
(VLMs) to track hands and recognize objects is clinically
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significant, especially in high-stakes medical environments.
Accurate hand tracking enables Al assistants to assess pro-
cedural skills in real-time, offering immediate feedback on
bimanual coordination and task execution (Azari et al. 2019;
Mackenzie et al. 2021). Meanwhile, integrating object de-
tection with natural language understanding allows clini-
cians to ask Al assistants where specific tools are located,
reducing cognitive load and minimizing the risk of human
error. Various VLMs have demonstrated object detection
capability (Feng et al. 2025), such as Florence-2 (Xiao et
al. 2023) and F-VLM (Kuo et al. 2022), highlighting the
potentials to train unified VLMs that can perform various
vision tasks to assist medical procedures.

3.7 Dataset classes distribution

The dataset comprises 220 videos demonstrating 5 medical
procedures and contains 3717 fully annotated video clips.
For action classes, the distribution is in accordance to real-
world scenarios, leading to a long-tailed dataset. The regular
procedure includes 42 verb classes, 42 noun classes, and
124 action classes, while the JIT procedure includes 28 verb
classes, 32 noun classes, and 86 action classes.

3.8 Annotation accuracy statistics

Due to the large volume of the dataset, the reviewers were
requested to randomly review 60 videos in the dataset
according to the above-stated instructions. The temporal
accuracy is 99.4%, the label accuracies of actions, verbs,
and nouns are 97.2%, 97.2%, and 97.7%, respectively.

4. Benchmark Results

4.1 Action recognition and action anticipation

Evaluation setups and metrics The dataset is split into
the train and test sets by 80% and 20% of the data, respec-
tively, for both the regular and JIT procedures. We trained
all algorithms on the regular or combined (regular+JIT)
set and tested them in three categories: regular alone, JIT
alone, and combined setting. Each model was trained on a
GeForce RTX™ 4090 Ti. A class-agnostic approach was
used to assess accuracy of the models (H. Zhao et al. 2019).
The Topl and Topb accuracies for verb, noun, and action
(verb + noun) were evaluated.

Action recognition We trained on vision models (VMs)
and VLMs for action recognition using the TTD on both the
regular and JIT procedures. All models were pretrained and
then finetuned on the TTD. TTD is a long-tailed dataset, so
random oversampling was adopted to rebalance the dataset.
Table 2 presents a performance comparison of various ac-
tion recognition models evaluated on different train-test
configurations. Six models are assessed: VideoSwin (Z. Liu

et al. 2022), TimeSFormer (Bertasius, Wang, and Torresani
2021), Uniformer v2 (K. Li et al. 2022), VideoMAE (Tong
et al. 2022), MViT v2 (Yanghao Li et al. 2022), LaViLa (Y.
Zhao et al. 2022). Each model’s performance is measured
using Topl and Top5 accuracy metrics under three different
train-test scenarios: regular, JIT, and combined.

In the first scenario, when models are trained and tested
on regular data, MViT v2 achieves the highest accuracy,
with 65.59% Topl and 89.75% Top5. Uniformer v2 fol-
lows closely, with Topl and Top5 accuracies of 60.47%
and 85.65%, respectively. In contrast, TimeSFormer has
the lowest performance, achieving only 31.91% Topl and
62.81% Top5 accuracy. When tested on JIT data with
regular training, all models experience a substantial drop
in performance. MViT v2 remains the best performer with
a Topl accuracy of 14.49%, but other models, like TimeS-
Former and LaVila, perform poorly, with Topl accuracies
below 1%. In the combined test setting with regular train-
ing, a similar trend is observed, where MViT v2 continues
to outperform other models, achieving 58.58% Topl and
82.08% Topb accuracy, and TimeSFormer remains the least
effective model. This indicates that regular training does
not generalize well to JIT or combined testing scenarios for
most models.

In the second training scenario, where models are trained
on combined data, their performance improves significantly
in the JIT test setting. MViT v2 achieves the highest Topb
accuracy of 90.38%, while Uniformer v2 performs best
in terms of Topl accuracy of 53.85%. Compared to the
regular training, this training strategy significantly improves
performance on the JIT test data for all models, highlighting
the benefits of incorporating diverse training data. For the
combined test setting under combined training, MViT v2
continues to perform the best with a Topl accuracy of
64.42% and a Top5 accuracy of 88.82%. Uniformer v2 and
VideoMAE also achieve high accuracies in this setup, while
TimeSFormer remains the least effective across all metrics
and scenarios.

Figure 3a presents the confusion matrix of the best
performing model MVIiT v2 on the action recognition task.
The dark color in the diagonal direction indicates high
prediction accuracy of the model. The labels are arranged
by action class frequency, with more frequent classes on
the top and less frequent at the bottom. It can be seen
that there are some dark spots in the lower part of the
figure, indicating the difficulty of the model to predict less
frequent classes. Figure 4 illustrates the detailed top 1
accuracy of verb, noun, action of recognizing the five types
of emergency procedures for each model. The similarity of
shapes in the radar charts indicates the coherence in the
performance of the models for each procedure. It can be
seen that the best performing algorithm does not triumph
in all procedures.
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Table 2: Accuracy (%) comparison of action recognition models on different train-test settings.

for lower values,

while for higher values.
Train Test VideoSwin TimeSFormer VideoMAE Uniformer v2 MVIiT v2 LaVilLa
Topl Top5 Topl Top5 Topl Top5 Topl Top5 Topl Top5 Topl  Topb
Regular 45.10 74.52 31.91 62.81 43.34 71.89 60.47 85.65 65.59 89.75 42.52 68.81
Regular JT 3.85 15.38 0.51 5.77 5.77 17.31 8.65 21.15 14.49 35.20 0.96 9.62
Combined  34.60 66.71 27.70 55.27 38.37 64.68 53.62 77.13 58.58 82.08 38.25 60.99
Regular 44 51 73.35 29.42 63.69 48.61 73.06 60.32 84.19 66.47 89.17 40.17 66.67
Combined JIT 39.42 70.19 32.69 58.65 44.23 65.38 53.85 80.77 50.96 90.38 37.71 63.84
Combined 43.84 72.94 29.86 63.02 48.03 72.05 59.47 83.74 64.42 88.82 39.53 66.02
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Figure 3: Confusion matrices of action recognition and action anticipation with MViT v2 on regular procedures.

Action Anticipation Table 3 presents the benchmarking
results for action anticipation on the same six models. For
the regular train-test setup, MViT v2 achieves the highest
Topl and Top5 accuracy of 60.12% and 87.02% , followed
by Uniformer v2 with 56.25% Topl and 84.70% Top5 ac-
curacy. Other models, such as VideoSwin and VideoMAE,
exhibit moderate performance, while TimeSFormer strug-
gles with a Topl accuracy of only 28.44%. When tested
on JIT data with regular training, all models show big
performance degradation, with MViT v2 achieving a maxi-
mum Topl accuracy of only 8.42%. Uniformer v2 performs
similarly, highlighting the challenges of generalizing antic-
ipation models to JIT scenarios when trained on regular
data. Under the combined test setting with regular training,
MVIiT v2 again performs best, with a Topl accuracy of
53.50% and a Top5 accuracy of 78.71%. Uniformer v2
closely follows, while TimeSFormer remains the weakest
model. These trends are consistent with those observed
in the regular test setting, underscoring the difficulty of
training anticipation models for diverse scenarios using only
regular procedure data.

The action anticipation results follow a similar trend
to action recognition, with MViT v2 and Uniformer v2
outperforming other models across all scenarios. However,
the absolute performance metrics for anticipation are slightly
lower than those for recognition, particularly in the JIT
test setting, where models experience a sharper decline
in accuracy. This suggests that predicting future actions
is inherently more challenging than recognizing current
actions, especially in diverse or unexpected scenarios such
as JIT procedures. The benefit of training on combined
data is evident in both tasks, as it significantly enhances
the models’ generalization capabilities for regular and JIT
settings.

Figure 3b shows the confusion matrix of the best per-
formaning model MViT v2 on the action anticipation task.
Similar performance has already been observed in action
recognition, with less frequent classes being harder to clas-
sify for the model. Figure 5 illustrates the comparison of
different models for action anticipation on the five emer-
gency procedures. Similar plots are observed in action
recognition, but with increased performance of the models
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Table 3: Accuracy (%) comparison of action anticipation models on different train-test settings.

for lower values,

while for higher values.

Train Test VideoSwin TimeSFormer VideoMAE Uniformer v2 MVIiT v2 LaVilLa
Topl Topb Topl Topb Topl Topb Topl Topb Topl Topb Topl Topb
Regular 30.88 69.24 2844 5997 4142 6924 5625 8470 60.12 87.02 3879 67.85
Regular JT 3.16 7.37 3.16 7.37 2.11 8.42 5.26 23.16 8.42 22.11 1.05 8.42
Combined 35.18 61.32 2520 5323 3639 6146 49.73 76.82 5350 7871 3396 60.24
Regular 4189 69.09 26.74 6121 4405 6940 5795 8377 60.74 86.56 40.03 67.58
Combined JIT 36.84 63.16 2421 56.84 3368 6842 4737 81.05 4842 8632 3564 61.96
Combined 4124 6833 2642 60.65 4272 6927 56.60 8342 59.16 86.52 39.65 66.73

compared to the action anticipation task.

4.2 VQA

Table 4 compares the performance of 6 finetuned VQA mod-
els of various sizes, ViLT-B/32 (W. Kim, Son, and I. Kim
2021), BLIP (J. Li et al. 2022), Florence2(Yuan et al. 2021),
LLaVA-v1.6-7B (H. Liu, C. Li, Wu, et al. 2023; H. Liu, C. Li,
Yuheng Li, et al. 2024), Qwen2.5-VL-7B (Bai et al. 2025),
and Gemma3-4B (Gemma Team et al. 2025). LLaVA-v1.6,
Qwen2.5-VL and Gemma3 are finetuned with the QLoRA
(Quantized Low-Rank Adaptation) (Dettmers et al. 2023)
approach for efficient adaptation on a single GPU. BLIP
achieved the highest accuracy of 88.64%, demonstrating
strong VQA capabilities with a relatively moderate size. It
was followed by Florence-2 with 87.86% accuracy. LLaVa-
v1.6 achieved an accuracy of 85.57%, Qwen2.5-VL(7B)
achieved an accuracy of 83.29%, and Gemma3 achieved an
accuracy of 72.04%. ViLT-B/32 offers a lighter alternative
with only 87 million parameters and an accuracy of 79.88%.

5. Conclusion

In this paper, we present the first egocentric dataset of five
different LSI procedures for providing care in austere and
adverse settings, along with benchmarks. We introduced
various new challenges, such as hand occlusions, mistakes,
and outdoors and field settings using improvised tools. Ad-
ditionally, we created JIT procedures in the dataset and it
is very challenging for VMs to make inferences in a zero-
shot learning manner. Another characteristic of our dataset
is that it is unscripted, leading to a significant variation
between different performers, based on their experience
in operational medicine. The TTD has simplified annota-
tions (verb + noun). Future efforts will include allowing
the actions to be annotated using complete sentences with
detailed instructions and expanding the dataset with more
varied procedural scenes, including additional improvised
actions and broader context. Increasing dataset diversity
could greatly enhance the performance of algorithms. Such
efforts are critical to advancing the development of Al
medical assistants in the complex domain of humanitarian
medicine. Moreover, training unified VLMs that can solve
all tasks in the TTD will greatly increase the clinical values
of Al medical assistants.
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Table 4: VQA model performance comparison.

Model Accuracy (%) Parameters Vision Language
ViLT-B/32 79.88 87M Transformer-based BERT
BLIP-base 88.64 224M ViT BERT
Florence-2-base 87.86 230M DaViT Transformer-based
Qwen2.5-VL 83.29 7B CLIP-based ViT Qwen2.5 LLM
LLaVa-vl.6 85.47 7B CLIP-based ViT Vicuna
Gemma3 72.04 4B SigLIP Gemma 3 LLM
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