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Abstract

Biomedical image analysis, especially in cell and tissue microscopy, is a necessary and tedious task in bio laboratories
that requires biomedical expertise and is therefore highly cost-intensive. Additionally, the subjectivity of the analysis and
the susceptibility to human errors affect the comparability of scientific results. While deep learning holds promise for
automating these analysis tasks, biomedical specialists rarely possess the necessary skill set and capacities to develop,
deploy and maintain robust DL applications for their individual analyses. We propose a four-stage domain-specific image
automated machine learning (AutoML) system architecture that aims to balance the generality-specificity trade-off that
AutoML-systems typically suffer from and apply it to the domain of cellular image analysis. We introduce AlxCell to
automate the design, construction and training of deep learning-based pipelines for cellular image analysis. By leveraging
a portfolio-based meta-learning approach and multi-fidelity training (i.e., successive halving), AlxCell identifies, trains and
provides the optimal image analysis pipeline to the biomedical expert. The results show the effectiveness of meta-learning
in a domain-specific setting and that AlxCell reliably outperforms baseline solutions. Our findings highlight the potential
of domain-specific image AutoML-systems to enhance efficiency and limit cost in biomedical image analysis.
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1. Introduction extraction from image data, have achieved impressive re-
sults especially in the life science domain (Anagnostidis
et al., 2020; Xu et al., 2022; Moen et al., 2019; van Valen
et al., 2016; Leyendecker et al., 2022). However, develop-
ing DL applications requires experience and expertise in
data science, machine learning, information technology, and
software development. Biomedical specialists rarely have
the necessary skillset and capacities to develop, deploy and
maintain robust DL applications for their individual analy-
ses. Moreover, commissioning specific stand-alone solutions
for a variety of use-cases is oftentimes not economically
feasible for clinical institutions and laboratories. Therefore,
to enable biomedical specialists to automate their individual
cell and tissue analyses with the help of DL-based image

Analyzing biomedical image data, e.g. in cell and tissue
microscopy, is labor-intensive, time-consuming and cum-
bersome. These tasks are performed by specialized labora-
tory personnel and are therefore cost-intensive. Moreover,
the subjectivity of the analysis and the susceptibility to
application- and instrument-specific errors affect the com-
parability of scientific results. The automation of these
analyses would allow biomedical experts, such as biolo-
gists, physicians, and virologists, to use their time more
effectively for creative, value-adding activities and would ob-
jectify study results. Deep learning (DL) algorithms, which
use deep artificial neural networks for semantic knowledge
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analysis pipelines, technology is required to fully automate
the development task.

Given this objective, we propose AlxCell, a domain-
specific automated machine learning (AutoML) system,
that aims to balance the generality-specificity trade-off
between different image analysis tasks. AlxCell aims to au-
tomatically configure and train the best possible DL-based
image analysis pipeline for the microscopy image dataset
and analyses task description provided by the user. The
first and most important task for cellular image analyses
is segmentation of the regions of interest. Therefore, Alx-
Cell configures pre-processing, neural network architecture
and hyperparameters for optimal segmentation under the
conditions of user-defined computational resources. To
finalize the analysis task, based on the segmented image,
AlxCell allows the user to configure post-processing steps
tailored to their use-case. The identified best data pipeline
is provided to the expert for integration into their analysis
workflow. Biomedical image analysis, especially in cell and
tissue microscopy, is crucial but often labor-intensive and
prohibitively expensive. While deep learning holds promise
for automating these tasks, its effectiveness typically re-
quires task-specific adjustments made by human experts.
We introduce AlxCell, a domain-specific automated ma-
chine learning (AutoML) system tailored for cellular image
analysis to automate these task-specific adaptations. By
leveraging meta-learning and successive halving, AlxCell
identifies the optimal image analysis pipeline, aiming to
support biomedical experts by alleviating the complexities
of solution development. The meta-data used for training
the meta-learning models consist of 1,423 evaluations of
pipeline performances on eight different microscopy analy-
ses use-cases. We investigate how different meta-features
(i.e., information on the analyses task and dataset similari-
ties) impact the performance of the meta-models and the
final accuracy of the segmentation. Our results show the
effectiveness of meta-learning in a domain-specific setting
and that AlxCell reliably outperforms baseline solutions,
while being outperformed by SOTA solutions developed by
human experts. Nonetheless, we illustrate the potential of
domain-specific AutoML-systems for image analyses tasks.

2. Related Works

In this section, we review the state-of-the-art for cellular
image analysis tools, AutoML for image data and meta-
learning-based approaches for tabular data. Finally, we
highlight how the presented experiments and overall system
contribute to research in these fields.

2.1 Systems for Cellular Image Analyses

A variety of systems that allow biomedical experts to an-
alyze cellular images have been developed, here we will
briefly review a few. llastik (Berg et al., 2019) contains
pre-defined workflows for image segmentation, object clas-
sification, counting, and tracking. With its impressive user
interface and good performance of the default workflows,
it finds widespread adoption. To perform the segmentation
task, llastik relies on a default workflow, that consists of
pixel-wise feature extraction and then pixel-wise classifi-
cation using a random forest. CellProfiler (Jones et al.,
2008) is another cellular image analysis software tool. The
main focus of CellProfiler is on automatically extracting
features and offering a wide variety of visualization tools.
To perform the segmentation task, researchers have to add
their own workflow since no default option is provided. Cell-
pose (Stringer et al., 2021) is a recent model for instance
segmentation of cellular images, that offers state-of-the-
art performance and does not require re-training for new
datasets. The model is a residual U-Net trained on a
large dataset composed of cellular images from a variety of
microscopy modalities and fluorescent markers. Cellpose
achieves great performance due to this training on a care-
fully curated, diverse dataset and by learning to predict
gradients that point to the center of the individual objects.
Instance segmentation is different to semantic segmentation
and it is unclear if the approach of Cellpose would work
for semantic segmentation. None of the presented systems
perform dataset-specific optimization of their segmentation
workflows. This tuning of hyperparameters is important for
optimal performance of machine learning systems (Olson
et al., 2017).

AutoML focuses on finding optimal ML solutions for
new problems (Hutter et al., 2019). Most research within
AutoML has focused on tabular data and a variety of well-
performing systems are available (Kotthoff et al., 2019;
Zimmer et al., 2020; Erickson et al., 2020; Le et al., 2020;
Feurer et al., 2019). These systems mostly rely on tradi-
tional machine learning approaches, while for image data
deep learning approaches are superior. There are significant
differences between optimizing traditional ML-pipelines and
DL-pipelines (Hutter et al., 2019). In general, predicting
an optimal DL-pipeline for biomedical images is challeng-
ing due to diverse images, multiple image modalities, and
approaching new tasks (Zhang and Cao, 2019).

2.2 AutoML for Image Data

Research on AutoML for image data focuses on neural
architecture search (NAS) that aims to find the optimal
DL architecture for a given task (Elsken et al., 2018). A
successful AutoML tool that performs NAS is AutoKeras
(Jin et al., 2023). AutoKeras combines Bayesian optimiza-
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tion with a novel method called neural morphism. This
is the process of modifying a given neural network archi-
tecture by applying discrete operations such as inserting a
layer, adding a skip connection between two layers. What
morphism operation to apply and evaluate next is deter-
mined by utilizing Bayesian optimization. The benefit of
this network morphism is that previously trained weights
can be reused, reducing the evaluation time for different
configurations. Moreover, the functionality of the network is
preserved throughout the optimization process. Optimizing
the hyperparameters of a DL-pipeline is different from NAS.
Due to changing hyperparameters influencing the entire
training process, techniques such as neural morphism are
not applicable. While finding an optimal DL architecture is
important for optimal performance, tuning hyperparameters
is also crucial.

One AutoML-system for computer vision that optimizes
both neural architecture and hyperparameters is T-AutoML
(Yang et al., 2021). Specifically developed for 3D lesion
segmentation in medical images, its search space is simi-
lar to the presented system. In the T-AutoML workflow,
100 uniformly sampled configurations are trained on the
target dataset and a transformer model learns to predict
the better validation accuracy given two configurations.
Using the 100 evaluated and an additional 100 randomly
sampled configurations the transformer predicts the best
out of these 200 configurations. In this way, T-AutoML has
achieved state-of-the-art performance on two benchmark
lession detection datasets.

Another popular system that configures the entire seg-
mentation pipeline based on the UNet architecture is NN-
UNet (Isensee et al., 2021). NN-UNet relies on a set of
carefully designed heuristics to automatically configure its
pipeline for each dataset, rather than using traditional hy-
perparameter search methods. These heuristics govern key
aspects of the segmentation process: preprocessing, network
architecture, training, and model selection. Preprocessing
and network architecture selection are based on image size,
image modality and available compute resources. During
training, NN-UNet employs a fixed set of data augmentation
techniques with dynamic learning rate adjustment. This
heuristic-driven approach enables NN-UNet to adapt to
diverse medical imaging tasks without manual intervention
and makes it a highly competitive comparison for image
segmentation tasks.

In addition, a variety of proprietary AutoML-systems
exist. Google AutoML!, H20 hydrogen torch?, Microsoft

1. https://cloud.google.com/automl
2. https://h20.ai/platform/ai-cloud/make/
hydrogen-torch/

Azure AutoML3, Amazon Sagemaker* and BigML's Op-
tiML® all offer automatic configuration of DL-models for
image analyses. The user, therefore, does not need to con-
figure a model themselves, but can just upload their dataset,
pay a fee, and get a trained model in return. A comparison
of some of the most prominent AutoML-systems for image
classification was provided by Yang et al. (2023) who de-
veloped MedMNIST an AutoML benchmark for biomedical
image classification.

2.3 Meta-Learning in AutoML

In AutoML, meta-learning or learning to learn, refers to
using previous experience to learn how to perform a new
task (Vanschoren, 2019). Previous experience is available
in the form of meta-data consisting of tuples P(i, j) where
i is some dataset and j is the pipeline configuration. For
each tuple P(i, j) there are some evaluation scores such as
accuracy and run-time, showing how well configuration j
did on dataset i.

There are different ways in which AutoML-systems use
this meta-data to find optimal ML solutions for new datasets.
For instance, the meta-data can be used to warm-start an
optimization process by first evaluating configurations that
perform well on similar datasets and are therefore likely to
perform well. This has been used in the (early) version of
Auto-Sklearn which has won many AutoML competitions
(Feurer et al., 2019). Another way of leveraging the meta-
data is to have a meta-model learn to predict performance
metrics based on a concatenation of the vectors describing
the configuration j and the dataset i. In this way, the meta-
model can then be used to rank all possible configurations
for a new dataset. Then the top-N predicted configurations
can be evaluated on the new dataset and the configuration
is determined.

Two examples of tabular AutoML-systems that use a
ranking approach are AutoBagging and RankML. AutoBag-
ging (Pinto et al., 2017) finds the best out of 63 possi-
ble bagging workflow configurations by using an XGBoost
model trained on a meta-base that includes 140 classi-
fication datasets with a total of 8,820 datapoints. To
quantify datasets, they extracted 158 meta-features using
an automatic meta-feature extraction tool (Pinto et al.,
2016). RankML (Laadan et al., 2019) searches various
available components with scikit-learn, for an optimal ML
workflow for a given classification or regression task. The
overall search space is limited by representing configura-
tions as acyclic graphs, in the order that machine learning
pipelines are usually designed. To construct the meta-base

3. https://azure.microsoft.com/en-us/services/
machine-learning/automatedml

4. https://cloud.google.com/automl

5. https://bigml.com/whatsnew/optiml
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Figure 1: Schematic structure and sequence diagram of the domain-specific AutoML-System

ML-pipelines were randomly constructed for each task, re-
gression or classification, and dataset. In this way, 142,006
pipelines for classification and 171,482 pipelines for regres-
sion were evaluated. Overall 149 classification and 79
regression datasets were included in the meta-base. An
XGBoost model with a pairwise loss function was trained
on this meta-base and then used to predict the top config-
urations for novel datasets. The resulting system achieved
performances similar to state-of-the-art AutoML-systems
on various AutoML benchmarks, at a fraction of time. So
RankML showed that it is possible to predict optimal ML-
pipelines for a new task, given a sufficiently large meta-base.
This is especially beneficial when the goal is to find an
optimal configuration in a short amount of time.

2.4 Our Contribution

As shown above, for cellular image analyses, a variety of
public and proprietary software tools exist that offer many
functionalities and are of great value to biomedical experts.
However, none of these systems perform dataset-specific
adaptations of the segmentation workflow. Optimizing
hyperparameters by using AutoML techniques could improve
the performance of these systems. Existing works on image-
based AutoML focus on NAS revealing that research into
hyperparameter tuning of vision systems is scarce. The
main challenge in optimizing DL-pipelines for image data
is that it takes significant time to evaluate a configuration.
Therefore, many optimization-based approaches that were
developed for tabular data are not viable in the image
regime. One technique from tabular AutoML-systems that
has shown promise for finding a configuration in a short

time frame is meta-learning. The caveat of meta-learning is
that it requires the construction of a meta-base. The large
computational cost of evaluating a configuration on image
data limits the possible size of meta-bases for image data.
For finding an optimal balance in the generality-specificity
trade-off, we propose a domain-specific AutoML-system by
purposefully limiting the application domain of our AutoML-
system to microscopy images of cells and tissue. By doing so,
we aim to utilize meta-learning with a relatively small meta-
base contributing to the real-world challenges in biomedical
research. To our best knowledge, such a meta-learning-
based domain-specific AutoML-system for cellular image
segmentation has not been developed before.

3. Methods

In this section, we start by explaining the structure and
functions of AlxCell. Following that, we provide a detailed
description of its individual components. These include the
module library, search space, meta-features, meta-learning,
and the multi-fidelity approach.

3.1 Domain-Specific AutoML-System Architecture and
Functionality

According to the schematic flow chart displayed in Figure 1,
AlxCell comprises four stages and an interplay of multiple
core components, which we will describe briefly in the fol-
lowing and in more detail in the later sections. It should be
noted that the first stage involves the training and updating
of AlxCell. This is only relevant for the developers and main-
tainers not the users of the system. Using AlxCell involves
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Figure 2: A visualization of the module libraries architecture. Abstractions facilitate the exchange of models as well as

preprocessing and postprocessing components.

stages 2, 3, and 4 (see Figure 1). To train and update the
AutoML-System, in stage 1, a new meta-model is trained,
which ranks pipeline configurations depending on their pre-
dicted performance for a given dataset. Stage 1 can only
be started by the maintainer of the AlxCell instance. Two
databases are used: First, the Image Database that stores
the labelled microscopy image datasets (unstructured data).
Second, the tabular Meta-Data Database, which contains
the performances of different prime pipeline configurations
on different datasets and the characteristics (meta-features)
of these datasets (structured data). The meta-data is col-
lected by the Meta-Data Generator that constructs, trains
and evaluates various DL-pipelines on all datasets. The
Meta-Feature Extractor (see Section 3.4) extracts various
features from the image dataset and combines them with
user-defined meta-features. These meta-features are used
for characterizing both the analysis task and the image
dataset. A precise characterization of the analysis task is
crucial for our portfolio-based AutoML-System allowing the
meta-model to draw relationships between problem char-
acteristics and solution configurations and performances.
Finally, multiple Meta-Models are trained and evaluated
on the Meta-Data Database. The best-performing Meta-
Model is used in the Meta-Pipeline in stage 2.

In stage 2, the biomedical experts use AlxCell to identify
a best-performing DL-pipeline for their analyses task and
dataset. The Meta-Feature Extractor extracts the meta-
features of the dataset and calculates the similarity measure
with respect to the other datasets. The Meta-Model pre-
dicts the loU-performance of all N possible DL-pipeline
configurations and ranks them accordingly. Afterwards, in
stage 3, the automated multi-fidelity training of the n out
of N best-performing DL-pipeline configurations is started.
Therefore, the pipelines are constructed according to their
configurations based on the Module Library, that stores all
preprocessing, modeling, and postprocessing modules. We
use successive halving (see Section 3.7) as multi-fidelity
approach. At set training intervals, half of the configura-

tions that are currently performing worst are successively
dropped. This continues until there is only one configu-
ration left, which is then trained to completion and used
for inferencing in stage 4. Stage 4 resembles the actual
application of the DL-pipeline for analyzing newly acquired
data points or datasets (inference mode).

3.2 Module Library

The module library provides the building blocks of the
primary DL-pipeline. According to figure 1 the pipeline
consists of preprocessing, model and postprocessing. The
Meta-Model or a human user can define the pipeline by
choosing from the provided options and configure the hy-
perparameters. Then the module library can be used to
construct, train and infer the pipeline.

Figure 2 shows the structure of the module library. The
three components, the preprocessor, learner and postpro-
cessor, are managed by the configurator. The preprocessor
is responsible for loading the image data and preparing
them so that the images can be processed by the DL-model.
Preprocessing can include for example patching, slicing,
augmentation, channel removal, and stacking. The learner
component represents the model and offers a variety of
model architectures, e.g. UNet, ICnet and DeeplLabV3,
that can be configured via hyperparameters. The last part
of the DL-pipeline is the postprocessing of the segmented
image, consisting of various operations including generic
and use case specific processing as well as visualization of
results. Examples are stitching and discretization of the
model output, the computation of the confluence of a cell
culture or the mean linear intercept of lung tissue. The
configurator receives the definition of the pipeline in the
form of a YAML-file, builds it by selecting the specified
implementation of the abstract components and can then
either train or retrain the model or infer the pipeline.

During the design of the module library special attention
has been paid to the aspects of reusability and exchange-
ability of components as well as extending the libraries by
additional component implementation. First of all, the ab-
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stract learner component allows the usage of models with
different architectures and hyperparameter configuration
with minimal necessary adaption of the rest of the pipeline.
As shown in figure 2 the postprocessor has an internal
pipeline structure consisting of multiple PostprocessingStep
instances. Second, while different use cases require different
postprocessing, they have certain operations, like discretiza-
tion or confluence computation, in common. Due to this
structure, they can be easily reused in different pipelines.
Finally, the declarative definition of the pipelines in form of
the YAML-files is readable for both the human user and the
components of AlxCell, allowing reuse of existing pipeline
definitions as template for new pipelines.

3.3 Search Space and Default Settings

For the design of an AutoML-system, a core decision to be
made is to choose what hyperparameters to automatically
optimize. The challenge for designing this search space is
to bias the system towards good solutions while including
enough variability to find an optimal configuration while
reducing computational efforts to the necessary minimum.

Table 1: The Search space considered in AlxCell. For the
augmentations, the value refers to the probability of apply-
ing an augmentation during the training process. Overall,
there are 576 possible configurations.

Hyperparameter Possible Values
Patch size 64, 128, 256

Batch size 4, 8, 16, 32

Learning rate 0.0005, 0.001, 0.01
Backbone ResNet-18, ResNet-50
Augmentation: Flip 0,05

Augmentation: Brightness 0, 0.5

Augmentation: Grid distortion 0, 0.5

t = ; + % * 0.75. If any of the classes occur on a
larger percentage of pixels then t the dataset is deemed
imbalanced.

In that case, an acceptable low and high threshold
for each class distribution value is calculated: aj,, =
p(z) — p(x) * 0.5 and apign = p(z) + p(x) *0.2. If a

For meta-learning-based domain-specific AutoML-systems,class occurrence percentage z[i] is below or above this

the search space needs to be customized to the problem and
be restricted enough to allow for successful meta-learning
on a small meta-base. In order to not require extensive com-
putational resources for training, we limit both patch-size
and batch-size.

As a foundation for the development of AlxCell, we
developed multiple DL-pipeline configurations on different
cell-biological datasets. In this process, we selected the fol-
lowing hyperparameters to be tuneable for dataset-specific
adaptation: batch size, patch size, image augmentations,
network backbone, and learning rate. The patch size refers
to the size of the patches extracted from the original images.
Patching is reasonable for semantic segmentation in micro-
scopic images, because of the high dimensionality of the raw
images making processing them as a whole through a DNN
infeasible. Because we identified different forms of image
augmentations to show large impact on model performance,
we included flipping, grid distortion, and a combination
of brightness and blurring into the search space. Image
augmentations were randomly applied during the training
process. A full list of all hyperparameters and their possible
values can be found in Table 1.

Automatic class-based sampling Furthermore, we en-
countered that class-based sampling to counter unbalanced
datasets is important. Learning class weights in the AutoML-
system will greatly increase the computational complex-
ity. Therefore, we define a simple rule to automatically
determine when and how to apply class-based sampling.
First a threshold based on the pixel-wise class distribu-
tion x and number of classes n in a dataset is calculated:

threshold, a re-sampling factor is calculated: factor = ajo
or apign/x[i]. The factor is capped at value of 2 for up-
sampling, but not capped for down-sampling. We do this
to limit the number of duplicated images in the dataset.
Class-based (re-)sampling is done based on the patches
extracted from the images. Please note that, depending on
the dataset, parts of the image might not belong to any
class. Therefore we use > x for the imbalance threshold
and p(x) for the acceptable threshold.

Default Settings While we allow certain hyperparameters
to be adaptive, others are set to remain at their default
values. Given preliminary experiments, we decided to use
the U-Net model architecture (Ronneberger et al., 2015) on
default in AlxCell. The encoder part of the network has five
down-sampling layers that each contain four convolutional
blocks. The convolutional blocks are based on ResNet and
contain 18 or 50 layers. The decoder part of the network
also has five convolutional blocks that follow the same
structure as the encoder blocks. The activation function
of the final layer is sigmoid for binary segmentation and
softmax for multi-class problems. The U-Net model utilizes
Adam optimizer and categorical focal loss (Lin et al., 2018).
For multi-class problems, the loss is adopted by including a
weighting factor ~, set to a value of 2 in all experiments,
that increases the importance of difficult-to-analyze samples
while decreasing the weight of easy-to-analyze samples
(Nguyen et al., 2018). Finally, we define the patch stride
as half the patch size on default.
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Table 2: Engineered Meta-Features, created by combining handcrafted Meta-Features with hyperparameter settings.
Sum(image augmentations) refers to how many of the three augmentations are applied and backbone is set to 0.5 for

ResNet-18 or 2 for ResNet-50.

Engineered Features

Calculation

number of patches per image
batches per epoch
augmentation batches
learning rate batches
backbone classes

3.4 Meta-Features

In our portfolio-based AutoML-system, to enable meta-
learning, a precise characterization of the dataset and the
analysis task is key for attributing model performances to
pipeline configurations and task characteristics. We do so
by extracting both task and dataset specific meta-features.
Due to the limited amount of meta-training data, the di-
mensionality of data-specific meta-features must be kept
to a minimum of informative features. In the presented
study, three different types of meta-features are evaluated.
Handcrafted meta-features are features of datasets that DL-
experts typically use when optimizing DL-configurations.
User-defined features refer to features given by the biomed-
ical expert, and finally optical meta-features that aim to
quantify the visual characteristics of the images.

Handcrafted Meta-Features We extract the following
set of handcrafted meta-features: the number of instances,
the number of classes, the class distribution, the mean
image shape, and the image format (RGB or grayscale). The
mean image shape refers to the mean of the average width
and height of all images in a dataset. Class distribution
is calculated pixel-wise. For each class, we calculate the
number of pixels over the total amount of pixels. Therefore,
the class distribution is represented by a vector with the
length of the number of classes. Since the number of meta-
features is required to be identical for each dataset, we
compress this list to a scalar value. This value is calculated
by taking the average distance between class distribution
values. To illustrate this consider a dataset with three
classes. Averaged across all images in the dataset, class
one occurs on 20% of all pixels, class two on 10% and
class three on 70%. This leads to a class distribution vector
of [0.2, 0.1. 0.7]. The average distance between class
distribution values is 0.4, this is the scalar meta-feature
used to represent class distribution.

In addition, we extract information about the regions
of interest (ROI) in the images. In semantic segmentation
there are multiple ROI per class, to compress these into
usable meta-features we calculate the mean, standard de-
viation, minimum, and maximum ROI size for each class.
These are then averaged for each image, and finally aver-

(mean image shape/patch size)?

n patches * n instances / batch size

sum(image augmentations) * 2 * batches per epoch
learning rate * batches per epoch

backbone * number of classes

aged across all images in the dataset yielding four additional
dataset-specific meta-features. Overall, AlxCell utilizes nine
handcrafted meta-features for each dataset.

User-defined Meta-Features To also take the character-
istics of the analysis task and the data acquisition modality
into consolidation, we include three different meta-features
provided by the biomedical expert: the microscopy tech-
nique, object of interest, and the magnification level. The
microscopy techniques and objects of interest are repre-
sented as binary vectors and the magnification level as a
scalar value. Moreover, an additional feature representing
if the magnification level is known for a dataset is included.
After binary encoding, AlxCell utilizes ten user-defined
meta-features for each dataset.

Optical Meta-Features For image-based AutoML-systems,
we consider information on the optical appearance of im-
ages as important to find precisely matching pipeline con-
figurations. Radiomics are data-characterization algorithms
aiming to extract a standardized set of features from images
(Lambin et al., 2017). These features consist of first-order
statistics, shape descriptors, and textural descriptors. This
way of quantitative image characterization has shown great
promise in clinical decision support systems to improve
diagnostic, prognostic, and predictive accuracy (Lambin
et al., 2017; Gitto et al., 2021). Specifically, we utilize the
Python implementation pyradiomics (van Griethuysen et al.,
2017) to extract 95 radiomics features per class. Classes
are defined by ROI which are annotated as masks for all
images in the dataset. For each ROI, a set of 95 features is
extracted. We average these feature vectors obtaining one
95-dimensional radiomics vector for each image. Averaging
all image-level vectors furthermore leads to one radiomics
vector for each dataset. Since these radiomics features
have different scales, we perform feature-wise normaliza-
tion. This is done in two ways: once over all radiomics
image vectors and once over all radiomics dataset vectors.
To illustrate this radiomics feature extraction, assume
a dataset with 20 images, each with three ROI represented
by image masks. This leads to three radiomics vectors z
per image; these are then averaged to obtain one radiomics
vector per image u[x]. Feature-wise normalization is first
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(a) UKB

(e) MSC

(¢) BBBC020

(h) UKA

(g) iPSC

Figure 3: Example images from each of the datasets used to create the Meta-Base.

applied over the 20 radiomics vectors p[z] in the dataset,
and the resulting vectors are averaged to obtain a normalized
dataset descriptor . Due to differences between datasets,
feature-wise normalization is then applied again over all
dataset descriptors §j; in the Meta-Base. Therefore, the
final radiomics representation of a dataset is 3/ = 244

=,
where 115 is the average of the feature in §j over all datasets
and o; is the standard deviation of the feature in § over all
datasets.

There are multiple alternatives to represent radiomics
dataset vectors. In our experiments, we evaluate the follow-
ing: PCA to compress the vector to four dimensions that
still capture 94.45% of the total variance between datasets;
cosine similarity between the dataset radiomics vectors and
using the entire 95-dimensional vector.

Feature Engineering All meta-features described above,
are constant for each dataset. However, all the within-
dataset variance comes from the varying hyperparameters.
To create more meaningful meta-features, we combine
dataset meta-features and hyperparameter settings. Table
2 includes the calculations for the engineered handcrafted
meta-features.

We also combine the optical meta-features with the
hyperparameters, to capture potential interaction effects
between the two. Either the first four principal components
or the eight similarity scores are multiplied by the learning
rate, backbone, and the number of classes. In this way, an
additional four respectively eight meta-features are created.

3.5 Meta-Base

As stated in Section 1, in meta-learning-based AutoML-
systems, the goal is to leverage previous experience to
identify the best-performing pipeline configuration for a
new dataset. In general, this experience comprises (dataset-

configuration-performance)-triplets from configurations eval-
uated on various datasets. We call this portfolio of expe-
riences the Meta-Base. To construct the Meta-Base, a
diverse set of datasets needs to be included to ensure trans-
ferability and applicability to unseen datasets. In AlxCell,
the application domain is limited to enable successful meta-
learning with a small number of datasets that still cover
the application domain.

The Meta-Base consists of pipeline configurations, sam-
pled without replacement from the search space, trained
on eight different datasets. Entries of the Meta-Base
are (dataset-configuration-performance)-triplets comprising
meta-features, pipeline configuration, and the validation set
loU-score.

The datasets used to construct the Meta-Base include
images obtained using three different microscopy techniques
(Brightfield, Fluorescence, and Phase Contrast) and con-
tain different segmentation objects. An example image for
each dataset is given in Figure 3 and an overview of the
characteristics of each dataset is given in Table 3. The
RUB (Leyendecker et al., 2025), UKK, UKA, and UKB
datasets were provided by university clinics. The iPSC and
MSC datasets stem from our own research at Fraunhofer
IPT. Finally, NB (Kumar et al., 2017) and BBBC020 (Ljosa
et al., 2012) are publicly available datasets.

Further publicly available dataset obtained using Elec-
tron Microscopy are described in Aswath et al. (2023).
Additionally, Shi et al. (2025) provide a large scale dataset
for cellular segmentation in images acquired using different
microscopy techniques. These are not used in the presented
study but can be used to validate our approach.

Since there are eight datasets and 576 possible config-
urations, there are a total of 4,608 possible data points.
To evaluate how well pipeline configurations perform af-
ter training, we evaluate them on a hold-out validation
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Table 3: Main characteristics of the datasets used to create the Meta-Base. The dimensions are averaged over all images
in a dataset and the ROI refers to what the region that biomedical experts aimed at analyzing.

Dataset Dimensions Instances Classes ROI Microscopy Technique
RUB 968x1292 72 2 Tissue Brightfield

UKA 2657x3395 71 4 Embroid Bodies Phase Contrast

UKB 1024x1024 32 4 Nuclei Fluorescence

UKK 957x1414 229 1 Sarcomeres Fluorescence

iPSC 2666x2666 40 6 Stem Cell Phase Contrast

MSC 2052x2052 202 3 Stem Cell Phase Contrast
BBBC020 1040x1388 20 2 Nuclei Fluorescence

NB 1000x1000 120 1 Nuclei Fluorescence

set. During each training run, the datasets are randomly
divided into 80% training and 20% validation images. In
this way, the train validation split is different each time.
To limit training times and still ensure convergence, we
implement early stopping. We train the configurations until
the validation set loU-score changes no more than 0.05 for
eight consecutive epochs. We define a comparatively large
performance delta of 0.05, because on some datasets, we
encountered high variability in validation loU-score between
different epochs. To construct the Meta-Base, a server with
an A100 SXM4 40 GB GPU is used to train and evaluate
pipeline configurations.

3.6 Meta-Learning

The core component of AlxCell is its meta-learning pipeline.
A (meta) ML-model is trained on the observations from
the Meta-Base and then used to predict a ranking of con-
figurations for a new dataset according to their predicted
loU-score. The input to the ML-model is the hyperparame-
ter vector concatenated with a meta-feature vector and the
output is a ranking of configurations.

In order to find the best meta-learning pipeline, a suit-
able evaluation metric is required. This metric needs to
capture the main objective of the meta-model which is to
limit the search space toward good configurations. There-
fore, the difference between a random selection and using
the meta-model to limit the search space is assessed using
the z-score. Accordingly, we define the z-score to be:

(@) — p(Yaur)

Z fry
9 (yazz)

where ¢ are the loU scores of the predicted top 10% con-
figurations and y,;; are the loU scores of all configurations.
The larger the z-score, the better the selection from the
meta-model is in comparison to a purely random selection.
To allow for further analyses, we report the Pearson
correlation between the predicted and the true ranking, the
RMSE for pointwise ranking approaches, and the difference
in the validation set loU-score between 1(4) and p(yan)-

To output a ranking of configurations, we compare two
different approaches. First, by using regression models to
directly predict loU scores and second, the learning-to-rank
algorithm LamdaMART with a pairwise loss function. We
evaluate the following regression models: Linear Regression,
Decision Tree, SVM, Random Forest, and XGBoost.

3.7 Multi-Fidelity Approach

Evaluating configurations on image data is computationally
expensive and the number of configurations that can be
fully evaluated is therefore limited. This makes AutoML for
images considerably more challenging than for tabular data.
A common approach that human experts use to combat
this problem is to evaluate configurations on a subset of the
data or some otherwise reduced version of it. Multi-fidelity
methods refer to algorithms that formalize these manual
heuristics, using so-called low fidelities to approximate the
actual performance of configurations (Hutter et al., 2019).

For AlxCell, we utilize successive halving, a multi-fidelity
method that allows for training and comparing the predicted
best-performing configurations in a given time frame.

In successive halving, all configurations are first eval-
uated on some initial evaluation budget, then the worst
performing half of all active configurations is dropped and
the evaluation budget is doubled. This procedure is then
repeated until only one active configuration is left. Since
the user defines time resources for training a DL-pipeline,
we set this training time as the available budget for suc-
cessive halving. Given the user-defined training time, the
budget for each step is derived. After each training step,
the configurations are evaluated on a validation set to de-
termine their performance. The successive halving process
is started with the top n out of N predicted configurations
from the meta-model.
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Table 4: Overview of all Meta-Feature representations investigated for the optimal meta-learning pipeline. On the left
side the possible sets of meta-features, described in section 3.4, are presented. To the right the different evaluated
combinations of these are shown, in total 12 different meta-feature representations are evaluated.

Meta-Feature Representation

4 5 10 11 12

Handcrafted Meta-Features

6 7
v v v v

1 2
v v
Engineered Handcrafted v

NN

ENES

9
v
v v v

User-given

v

4 PCA’s Radiomics Vectors

Radiomics Cosine Similarity

Engineered Radiomics PCA

Engineered Radiomics Similarity

SNENENENENENEN

95-dim Radiomics Vectors

4. Experiments

This section details the experiments performed to find the
optimal meta-learning pipeline and the evaluation of AlxCell.

4.1 Meta-Learning Experiments

The performance of the AutoML-system and thus the user
benefit depend primarily on the ability of the meta-learning
pipeline to identify high-performing DL-pipeline configura-
tions. Therefore, we evaluate different meta-features and
meta-model combinations.

For each meta-model, we evaluate twelve different meta-
feature representations (see Table 4). These twelve represen-
tations do not cover all possible meta-feature combinations.
Instead, they represent a subset of selected combinations
that allow to investigate the effects of each set of meta-
features. In total, we evaluate 8 x 12 = 76 meta-learning
pipelines.

To find the best one out of these meta-learning pipelines,
we utilize leave-one-dataset-out cross-validation. In this way,
the meta-learning pipeline is trained on seven datasets from
the meta-base and evaluated on the eighth dataset. Each
dataset is the validation set once. The performance of a
meta-model and meta-feature combination is then averaged
across all validation datasets. For achieving higher statisti-
cal significance, we evaluate each meta-pipeline across 30
different random seeds.

4.2 AutoML-System Evaluations

After identifying the best-performing meta-learning pipeline,
we utilize this pipeline to evaluate the performance of Alx-
Cell. To reiterate, the goal of AlxCell is to allow biomedical
experts to automate their analysis tasks with DL-pipelines
optimized for their individual use cases. To this end, we
compare AlxCell to a baseline DL-pipeline from the AlxCell
search space and NN-UNet (Isensee et al., 2021) a state-
of-the-art image segmentation baseline. For NN-UNet we
use the default plans but limit the VRAM to 7GB. Further-

10

v

more, we also compare AlxCell to the individually and by
DL-experts developed DL-pipelines for each use-case. All
experiments were carried out on a PC with 16GB of RAM,
an Intel i7 Processor, and an RTX 3060 GPU with 8GB of
VRAM.

To evaluate AlxCell, we define the number of best-
ranked configurations taking part in successive halving as
n = 50 out of N. Since the number of configurations
is halved each time, six steps are needed to identify the
best pipeline configuration. Based on the initial number
of configurations and the total number of steps, we know
that 27.38% of the total budget is used to train the best
configuration. We then choose the total budget for each
dataset based on their mean image dimensions and total
number of instances.

(a) Fluocells

Figure 4: Example Images of the two publicly available
datasets used to evaluate AlxCell

The first open-source dataset is Fluocells (Clissa et al.,
2021) with 283 images of neuronal cells. The images ob-
tained using fluorescent microscopy have varying dimensions
with a mean dimension of 1600x1200 pixels. The task is
binary segmentation, separating neuronal cells and back-
ground. See Figure 4a for an example image. We split the
dataset into 80 % training, 10 % validation, and 10 % test
data. Due to the large number of instances and relatively
large image dimensions of Fluocells, we assign a compute
budget of 6 hours. As a result, within successive halving,
the final configuration is trained for 1.64 hours.
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Figure 5: Distribution of validation set loU scores on each dataset. Scores were divided into 50 bins for visualization.

The second public dataset we use is the Electron Mi-
croscopy Dataset from EPFL (Lucchi et al., 2013). See
Figure 4b for an example image. This dataset offers a pre-
defined split into training and testing data. The training
set consists of 165 images of mitochondria, with dimension
of 1024x768 pixels. The image recognition task is to se-
mantically segment the mitochondria. The testing set also
contains 165 images of same dimensions. For performance
evaluation, the training set is split into 80 % training, 10
% validation, and 10 % testing data.

Subsequently, both UKB and iPSC datasets are used
to finally evaluate AlxCell. To this end, the meta-model is
only trained on the meta-data of the seven other datasets.
In analogy to the other datasets, a train, validation, and
testing split of 80 %, 10 %, and 10 % is used. Since UKB
is relatively small, we provide a compute budget of 4 hours
to train the top configuration for 1.09 hours. iPSC contains
40 images of comparatively high dimensions. Given that
the dataset comprises six different classes, it is reasonable
to assume that longer training times might be needed. We
therefore provide an increased compute budget of 6 hours
for this dataset.

Finally, after completing the training and utilizing the
final pipeline for inference, we compare the results to manual
analysis results of a human expert and to those of a default
pipeline configuration. Based on experience, we define the
hyperparameters for the default pipeline configuration to
be: batch size = 16, patch size = 128, learning rate =
0.001 and augmentations = Flip. To eliminate performance
differences induced by the dataset split, the default pipeline
and the best determined pipeline are evaluated using an
identical split of 80 % training and 20 % testing data.

5. Results

In this section, we present the results from the individual
experiments regarding the construction of the meta-base,
radiomics features for optical appearance, meta-learning
and the entire system are presented. Finally, we present the
validation results of the overall system.

5.1 Meta-Base

A total of 1,458 different configurations were trained on vari-
ous datasets, resulting in 1,423 data points in the meta-base
after removing 35 outlier configurations based on training
times and validation set loU-scores. This accounts for
30.8% of the possible data points in the design space. The
distributions of validation set loU-scores, excluding outliers,
are displayed in Figure 5. The majority of the datasets show
a normal distribution of scores, but the distributions of RUB
and NB are skewed towards favorable configurations. The
average standard deviation for validation set loU-score is
0.039, while the within-dataset standard deviation varies
among the datasets.

To evaluate the potential of radiomics in converting
images into informative vectors, the 95-dimensional im-
age vectors were compressed into two dimensions using
t-distributed stochastic neighbor embedding (T-SNE) Hin-
ton and Roweis (2002). First, the resulting visualization (see
Figure 6) clearly shows that images of a specific dataset are
clustered in the neighborhood of the images from the exact
same dataset. Second, the results reveal that the clusters
belonging to the respective datasets are distributed in the
cluster space. The proximity or distance of these clusters
appears plausible when compared with the images: visually
similar datasets are closer to each other in the cluster space

11
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Figure 6: Radiomics vectors of all images of the meta-base visualized in two dimensions. The colors represent the
dataset the vectors belong to, examples images for each dataset are also shown. Before applying T-SNE to the images,

feature-wise normalization was applied.

in comparison with visually dissimilar datasets. For example,
MSC and iPSC datasets that both contain images of stem
cells obtained through phase-contrast microscopy, cluster
closely together. The inherent limitations of T-SNE to
preserve global distance information, limit the conclusions
that can be drawn from this analysis. Therefore, we also
analyze the cosine similarities between dataset vectors.
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Figure 7: Cosine distance scores between the dataset level
radiomics vectors. A value of zero indicates vector directions
to be identical and a value of one indicates orthogonal
vectors.
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5.2 Meta-Features for Optical Appearance

A similar pattern emerges when examining the cosine dis-
tance scores between dataset-level radiomics vectors, as
illustrated in Figure 7. Datasets that share visual similari-
ties exhibit lower cosine distance scores, while those with
different visual characteristics have higher scores. For in-
stance, RUB and NB, being visually similar, exhibit the
lowest cosine distance score of 0.085. Conversely, UKK
and RUB, being visually distinct, display the highest cosine
distance score.

5.3 Meta-Features

We use the performance of the entire meta-learning pipeline
to assess the importance of the different meta-feature sets.
As seen in the next section, the most performant model
consistently uses the handcrafted meta-features and com-
binations of these with the hyperparameter space. Other
meta-features, such as user-defined or optical-appearance
are not used by the best models. We further validated
meta-feature importance using permutation with the best
meta-model, this analysis confirmed the results of the meta-
pipeline comparisons.

5.4 Meta-Learning

The best five configurations measured by z-score are shown
in Table 5 (for a definition of the metrics please refer to
Section 3.6). The best performance is obtained using a
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Table 5: The top 5 combinations of meta-features and meta-model, measured by z-score. The number in the Meta-

Features column refers to the representation in Table 4.

Meta-Model Meta-Features Z-score Pearson Diff loU RMSE
Random Forest 2 0.643 0.295 0.028 0.138
LamdaMART 1 0.608 0.299 0.030 -
LamdaMART 3 0.606 0.291 0.028 -
Random Forest 3 0.583 0.308 0.030 0.157
Random Forest 1 0.582 0.242 0.030 0.153

Table 6: The best configurations found by the AutoML-system for each evaluated dataset.

Dataset Patch Size Batch Size Learning Rate Backbone  Augmentations
Fluocells 256 16 0.001 ResNet-50 None

EM EPFL 256 8 0.0005 ResNet-18 None

UKB 128 4 0.0005 ResNet-18  Flip

iPSC 256 8 0.0005 ResNet-18 None

random forest regressor, trained to predict loU-scores based

on handcrafted and engineered handcrafted meta-features.

A selection based on the top 10% predicted configurations
by this meta-pipeline is 0.643 standard deviations better
than a random selection. When interpreting these results,
it has to be considered that the best possible z-score equals
1.41.

Looking at the metrics, it becomes apparent that the
z-score correlates with the Pearson correlation, difference
in loU-score and RMSE-score. While the largest z-score is
not always associated with the best score on these metrics,
configurations with large z-scores always have one of the
best scores on these metrics as well.

Overall, the metrics do not indicate good performance
by the meta-model, however, this illustrates the difficulty
of evaluating a meta-model in this context. Many of the
configurations only perform marginally different on some
datasets and it is therefore not important to accurately rank
these. For the RMSE, there are large differences in the
average loU-score between datasets (see Figure 5). Due
to the small number of datasets in the meta-base, it is
infeasible for the model to accurately estimate the mean
performance on a given dataset. This leads to relatively
large RMSE. Nonetheless, this is not necessarily relevant to
evaluate the meta-model since it is of higher importance
that the model is able to differentiate between bad and
good configurations.

For the best performing meta-pipeline, we evaluated
different maximum tree-depths for the random forest meta-
model. This is motivated to limit the capacity of the model
and to thereby reduce the risk of overfitting. The best
maximum tree depth was found to be 7. Training the
meta-pipeline again with the maximum tree-depth set to 7,
improved the results. Averaged over 20 random seeds, this
results in an average z-score of 0.688, an average RMSE

of 0.136, an average Pearson correlation of 0.291 and
a difference in loU of 0.262. Depending on the random
seed. the obtained z-scores ranged from 0.64 to 0.74, with
a standard deviation of 0.045. The performance of this
meta-pipeline on each of the validation datasets is shown
in Figure 8.

Obviously, the model performs similarly well across all
datasets even though the z-scores vary. This shows that
the z-scores always have to be assessed in the context
of the specific dataset and are not a suitable measure to
compare model performance between two datasets. The
performance plots reveal that on most datasets the model
does well at predicting bad configurations. However, the
variance increases in predicting the best configuration. This
is especially the case for BBBC020, MSC, and UKB, where
the meta-model predicts low loU scores for some of the
best true configurations. On MSC, one of the true top 10%
configurations is predicted to be the worst configuration.
On all datasets except for UKB, there is some overlap
between the predicted top 10% and true top 10% (green
points). Overall, the model performs worst on UKB. The
best performance is achieved on the RUB. Almost all points
in the true and predicted top 10% overlap.

Table 6 shows the best configurations found by AlxCell.
Oftentimes, these configurations comprise large patch sizes,
low learning rates and no augmentations steps.

13
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Figure 9: The best 50 predicted configurations evaluated on the given datasets using successive halving. At each step,

the worst performing half of configurations is dropped.

Table 7: Comparison of the baseline pipeline, AlxCell, NN-UNet and SOTA solutions developed by human experts. In
the identical splits column the same train/test split was used for the pipelines and in the unknown splits column the
data was split randomly. An exception of this is EM EPFL where a pre-defined split is provided.

Identical Splits Unknown Splits
Dataset Baseline AlxCell NN-UNet SOTA ‘ SOTA AlxCell ‘ Metric
Fluocells 0.6438 0.6522 0.5691 - 0.8149 0.7621 | F1-Score
EM EPFL | 0.8021 0.7832 0.8421 0.8672 | - - loU
UKB 0.6017  0.6201 0.6072 0.6212 | 0.64 0.60 loU
iPSC 0.5415  0.5720 0.5530 0.5824 | 0.7344 0.6431 | loU

5.5 Evaluation of the Meta-Learning-Based and
Domain-Specific AutoML-System

Using the outlined best meta-pipeline, a random forest
model limited to max tree depth value of 7 and hand-
crafted and engineered handcrafted meta-features, the over-
all AutoML-system was evaluated as described in section
4.2

In Figure 9, the training progressions of the n = 50 best
predicted configurations are illustrated. The plots reveal
that the training time needed to achieve good performance
varies across datasets. On the one hand, for UKB and EM-
EPFL, some configurations attain performances close to
the optimal configuration after only one successive halving
step. On the other hand, for Fluocells and iPSC datasets,

the performances increase significantly at each step and
the best configuration might have further improved given a
longer training budget. Nonetheless, the plots indicate that
a close to optimal configuration is found for each dataset.

Table 7 shows the overall results. The solutions in the
SOTA column refer to segmentation solutions developed by
human experts. For Fluocells, this pipeline uses a patch size
of 512 and six image augmentations which notably include
a cropping approach for over-sampling. The model used is
a ResUnet adopted to allow for a larger field of view (Clissa
et al., 2021). The solution for EM-EPFL uses a working set
based approximate subgradient descent method for learning
graphical models for structured prediction (Lucchi et al.,
2013). According to Leyendecker et al. (2022), for UKB,
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the reference solution relies on a feature-pyramid network
(Lin et al., 2017) with a VGG16 backbone, a patch size of
256, a batch size of 4, and categorical cross-entropy loss.
The best performance on iPSC dataset was achieved by a
pyramid scene parsing network (Zhao et al., 2016) and a
patch size of 384.

For all datasets without a pre-defined split, the system
outperforms the static baseline configuration and NN-UNet.
We note the performance differences between the identical
splits and the unknown data splits, indicating that perfor-
mance greatly depends on the data split. As expected,
the individually developed and tuned SOTA solutions out-
perform AlxCell on all datasets. NN-UNet performs com-
petitively on all datasets and outperforms AlxCell on EM
EPFL.

6. Discussion

We showcase AlxCell, a domain-specific meta-learning-
based AutoML-system for cellular image analyses. Our
analyses of the meta-learning system shows that, even with
a limited number of datasets and data points, the meta-
model can predict good configurations for a new dataset.
Leveraging this meta-model and successive halving, AlxCell
always outperforms a baseline and NN-UNet a generic HPO
optimization system for image segmentation. In this way
AlxCell enables biomedical experts to construct, train, and
utilize optimized DL-pipelines for their laboratory-specific
use cases.

6.1 Meta-Learning

Analyzing the influence of different meta-feature sets on
pipeline performance shows that handcrafted meta-features
and combinations of these with the hyperparameter space
are assigned the highest feature importance by the most
performant meta-models. On the other hand, our results
show that the optical appearance of images represented
using radiomics is not considered of high importance by
the best-performing meta-learning pipelines. They also do
not utilize user-defined meta-features about the biomedical
analyses task.

The main reason for the model's preference to a small
set of the most important meta-features could be the limited
size of the meta-base. This decreases the number of features
that can be optimally used by the model (Hua et al., 2005;
Figueroa et al., 2012). Furthermore, the meta-features are
not independent since they are always the same for a dataset.
This increases the correlation between meta-features which
further limits the number of optimal features.

For the optical meta-features, our qualitative evaluation
shows their promise in representing datasets. Nonetheless,
the relationship between the optical appearance and our
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hyperparameter space is ambiguous. We suspect that at
least the patch size and augmentations depend on the op-
tical appearance. However, the patch size also depends
on the statistics of the ROI's which are included in the
handcrafted meta-features. The augmentations are rarely
proposed by the meta-model, which may result from these
depending on the optical appearance and being specific
to each dataset. Reducing the radiomics vector to eight
(cosine scores) or four (PCA) dimensions could remove the
information required to predict the given augmentations.
While the optical meta-features are not used by the best
meta-pipeline, they are used in the 3¢ and 4" best con-
figurations. Combined with the results of our qualitative
analysis, this shows the potential of radiomics features to
quantify image datasets.

To improve the dataset-specific meta-features, future
work could explore different methods to reduce the dimen-
sionality of the radiomics vectors. Moreover, to increase the
informational content and therefore the quality of the meta-
features, tools such as MetaBU (Rakotoarison et al., 2022)
could be used to construct new and better meta-features
based on all extracted meta-features. In MetaBU this is
done via an Optimal Transport procedure, aligning the man-
ually designed meta-features with the space of distributions
on the hyperparameter configurations.

Compared to other meta-learning-based AutoML-systems,
such as AutoBagging (Pinto et al., 2017) and RankML
(Laadan et al., 2019), AlxCell’s meta-model learns based
on a much smaller meta-base. While the meta-model also
performs worse than AutoBagging or RankML, it is still
able to identify good configurations for a new dataset and
therefore outlining the potential of limiting the domain in
meta-learning.

Using successive halving allows AlxCell to evaluate n
out of N pipelines using the same time budget that would
be required to perform around five full evaluations. The
results indicate that for each dataset the best pipeline is
trained until convergence (see Figure 9). However, we
note that the time budget required for each dataset varies
and that for Fluocells and iPSC, a larger budget might
have improved final performance. This time budget is a
parameter that needs to be chosen by the biomedical expert,
however, even when choosing the budget conservatively,
AlxCell still runs within a reasonable time with regard to
laboratory practice.

In summary, our meta-learning experiments demon-
strate that despite having a relatively small meta-base,
meta-learning effectively guides the search space towards
configurations that yield high performance significantly out-
performing random selection. Doing so across multiple
random seeds further highlights the robustness of our sys-
tem. This demonstrates the potential of meta-learning in
domain-specific scenarios, even with the high computational
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cost of evaluating individual configurations.

6.2 AlxCell

The evaluations of AlxCell show that SOTA solutions out-
perform it, however, it outperforms the baseline solutions
and NN-UNet (see Table 7). Outperforming NN-UNet
(Isensee et al., 2021), a generic heuristic-based system, on
three datasets demonstrates the potential of a domain-
specific system. We note that NN-UNet might outperform
AlxCell if it is run on a larger GPU since it could then use
larger patch and batch sizes. Nonetheless, both were run
on similar GPUs so it is a fair comparison.

As described, the SOTA solutions entail complexity,
with human experts experimenting with various configura-
tions and performing dataset specific adaptations. Given
the search space and time constraints of AlxCell, it is to
be expected that it performs worse. Nonetheless, since
AlxCell outperforms baseline solutions it provides biomedi-
cal experts the benefits of dataset-specific hyperparameter
tuning. While the improvements over the baseline solu-
tions are small, taking into context the meta-base statistics
(see Figure 5) shows that the best configurations found by
AlxCell are in the top quintile of all sampled configurations.

A noteworthy observation pertains to the performance
variations between identical and unknown data splits. This
indicates that in cellular image segmentation, the perfor-
mance is significantly influenced by the data split. Using
a stratified splitting, potentially also taking into account
visual features, might lead to more uniform results.

In comparison to the state-of-the-art of AutoML for im-
age data and automatic methods for cellular segmentation,
AlxCell, presents a novel approach by using meta-learning
and focusing on a specific domain. The benefit of this
approach is that it greatly reduces the compute required to
find an optimal configuration for a novel dataset. A down-
side is that AlxCell cannot compete with SOTA solutions
developed by human experts. Nonetheless, the results show
reliable improvement over baseline solutions and therefore
the benefits of task-specific configuration tuning.

Integrating these task-specific adaptations could im-
prove the performance of systems relying on a generalist
segmentation solution such as CellProfiler (Jones et al.,
2008) or llastik (Berg et al., 2019). Compared to T-AutoML
(Yang et al., 2021) AlxCell uses a similar methodology but
requires significantly less compute for the optimization pro-
cess. Nonetheless, T-AutoML considers a larger search
space and, in principle, works for all semantic segmentation
tasks.

7. Conclusion

Motivated by the current practice in biomedical laboratories
of manually analyzing increasing amounts of microscopy im-
ages, we propose AlxCell, a domain-specific meta-learning-
based AutoML-system for analyzing cellular image data.
With AlxCell and its four-stage AutoML-system architec-
ture, we aim to provide a tool allowing biomedical experts
to automate the otherwise difficult task of developing entire
DL-based image processing pipelines. To meet the high
requirements of biomedical image analyses, we propose a
domain-specific approach. According to that and aiming
to balance the generality-specificity trade-off, AlxCell is
trained on a portfolio of cellular and tissue image datasets
with varying analysis tasks. We utilize a portfolio-based
meta-learning-based approach for predicting top-performing
pipeline configurations for a given dataset. Subsequently,
AlxCell utilizes a multi-fidelity approach in the form of
successive halving according to which n out of N top-
performing pipelines are trained under a fixed time budget
until the best-performing DL-pipeline is identified. We per-
form a throughout evaluation of the meta-learning setup
and evaluate AlxCell on four datasets. Our results show
that meta-learning is suitable to limit the search space to-
wards good-performing configurations, with handcrafted
meta-features being the most important. AlxCell always
outperforms a baseline DL-pipeline and outperforms NN-
UNet, a generic solution, on three out of four datasets. This
underscores the benefit of dataset-specific DL-pipelines and
the domain-specific approach. However, by automating the
development process of DL-pipelines for biomedical image
analysis and by trading-off specificity for generality, AlxCell
faces high computational costs in comparison with manually
developed pipelines. Limitations of AlxCell include its static
but growing post-processing library that requires the imple-
mentation of custom post-processing functions for solving
novel analysis tasks. For training a new primary pipeline
on a novel task, AlxCell still relies on manual labeling and
its performance is dependent on label quality. Furthermore,
AlxCell’s ability to propose a suitable pipeline for a novel
task depends on the task’s representation within the meta-
data. However, with increasing diversity of the meta-data,
we consider that the performance of AlxCell will further in-
crease across a growing variety of biomedical analysis tasks.
In summary, we conclude that limiting the application do-
main and utilizing meta-learning within this domain, is a
promising approach in designing AutoML-systems for image
data. In the application area of biomedical microscopic
image analyses, our system provides biomedical experts
with the benefits of dataset-specific DL-pipelines, without
requiring knowledge of deep learning.

Future research in meta-learning-based image AutoML-
systems could explore more effective meta-features, partic-

17



J. Roberg, L. Leyendecker, S. Schénleben, R. H. Schmitt, 2026

ularly emphasizing optical appearance to potentially better
predict dataset-centric adaptations, such as image aug-
mentations. Including more data-centric adaptations could
yield larger gains for dataset-specific optimization. Also,
further research should investigate the sensitivity of segmen-
tation algorithms with respect to the size and shape of cell
structures and the resulting generalizability of the models.
Additionally, examining different multi-fidelity methods, in-
cluding early stopping, could further enhance the efficiency
and effectiveness of these systems.
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