
Machine Learning
for Biomedical Imaging

Benchmarking Foundation Models for Mitotic Figure Classification
Jonas Ammeling 1 , Jonathan Ganz 2, 1 , Emely Rosbach 1 , Ludwig Lausser 1, Christof A. Bertram 3 , Katharina
Breininger 4, 5 , Marc Aubreville 6

1 Technische Hochschule Ingolstadt, AImotion, Ingolstadt, DE
2 MIRA vision Microscopy GmbH, Göppingen, DE
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Abstract
The performance of deep learning models is known to scale with data quantity and diversity. In pathology, as in many
other medical imaging domains, the availability of labeled images for a specific task is often limited. Self-supervised
learning techniques have enabled the use of vast amounts of unlabeled data to train large-scale neural networks, i.e.,
foundation models, that can address the limited data problem by providing semantically rich feature vectors that can
generalize well to new tasks with minimal training effort increasing model performance and robustness. In this work,
we investigate the use of foundation models for mitotic figure classification. The mitotic count, which can be derived
from this classification task, is an independent prognostic marker for specific tumors and part of certain tumor grading
systems. In particular, we investigate the data scaling laws on multiple current foundation models and evaluate their
robustness to unseen tumor domains. Next to the commonly used linear probing paradigm, we also adapt the models
using low-rank adaptation (LoRA) of their attention mechanisms. We compare all models against end-to-end-trained
baselines, both CNNs and Vision Transformers. Our results demonstrate that LoRA-adapted foundation models provide
superior performance to those adapted with standard linear probing, reaching performance levels close to 100 % data
availability with only 10 % of training data. Furthermore, LoRA-adaptation of the most recent foundation models
almost closes the out-of-domain performance gap when evaluated on unseen tumor domains. However, full fine-tuning
of traditional architectures still yields competitive performance.
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1. Introduction

S elf-supervised learning (SSL) is transforming the
landscape of publicly available methods for compu-
tational pathology (Khan et al., 2024). By lever-

aging vast amounts of unlabeled data, SSL overcomes
the limitations of traditional supervised approaches, which
are constrained by the availability of expert-annotated

datasets. This is particularly advantageous in computational
pathology, where annotation is a labor-intensive and time-
consuming process requiring highly trained pathologists to
examine large, high-resolution whole slide images (WSIs)
with diverse morphological structures across tissue types.
The annotation process is further challenged by fatigue
(Stec et al., 2018) and cognitive biases (Aeffner et al.,
2017; Viray et al., 2013; Leiser et al., 2023), leading to vari-
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ability in label quality and high inter-rater variability (Smits
et al., 2014). Additionally, differences in staining protocols
and scanning devices across institutions can alter tissue
appearance, complicating the development and deployment
of robust methods (Aubreville et al., 2024). The scarcity of
high-quality and large-scale datasets ultimately limits the
advancement of supervised models and hinders their general-
izability across diverse clinical settings. With the advent of
self-supervised learning (SSL) techniques such as SimCLR
(Chen et al., 2020a,b), MoCo (He et al., 2019; Chen et al.,
2020c) and DINO (Caron et al., 2021; Oquab et al., 2023),
large-scale neural networks were able to train on datasets
with sizes beyond 1 billion images (Goyal et al., 2021) sur-
passing the performance of models trained on labeled data
on competitive benchmarks like ImageNet (Tomasev et al.,
2022; He et al., 2019; Deng et al., 2009). These models,
often large Vision Transformers (ViTs) (Dosovitskiy et al.,
2020), are commonly referred to as foundation models due
to their ability to adapt to a wide range of downstream tasks
with little to no fine-tuning. Because of their comprehensive
pretraining, they are capable of generating semantically rich
embeddings, which enables them to perform well in tasks
such as few-shot learning and to serve as a robust foun-
dation for a multitude of downstream applications (Zhang
et al., 2024; Zhang and Metaxas, 2024).

Computational pathology is especially well-suited for
SSL, as it routinely generates large volumes of image data.
Public resources such as The Cancer Genome Atlas (TCGA)
(Tomczak et al., 2015) provide access to tens of thousands
of WSIs from multiple institutions, offering a diverse and
abundant source of training data. Leveraging these re-
sources, several pathology-specific foundation models have
recently been developed using TCGA (Chen and Krishnan,
2022; Wang et al., 2022a; Kang et al., 2022; Filiot et al.,
2023) and other public or proprietary datasets (Chen et al.,
2024a; Vorontsov et al., 2023; Zimmermann et al., 2024;
Filiot et al., 2024; Charlie et al., 2024; Xu et al., 2024).
These models are typically evaluated on downstream tasks
such as tumor subtyping, tissue classification and mutation
prediction.

A recent work by Vorontsov et al. (2023) has shown
that the image embeddings of foundation models can also
be utilized effectively for tasks that require fine-grained mor-
phological features, like mitotic figure classification. This
task is of particular importance in computational pathology,
as accurate identification and classification of mitotic figures
are crucial for assessing the aggressiveness of tumors and
estimating the outcome of tumor patients (prognostication)
(Elston and Ellis, 1991). However, the detection of mitotic
figures remains challenging due to their morphological simi-
larity to other cellular structures (Donovan et al., 2021) and
their sparse occurrence within tissue sections (Aubreville
et al., 2020b). In modern detection pipelines mitotic figure

classification is often employed as a second-stage process,
following the initial identification of candidate objects (Li
et al., 2018; Aubreville et al., 2024). The integration of
foundation models into these pipelines holds promise for
improving classification performance or to reduce the need
for large amounts of annotated data. Foundation mod-
els are typically adapted to new downstream tasks, such
as mitotic figure classification, using techniques such as
linear probing or model adaptation techniques like Low-
Rank Adaptation (LoRA) (Hu et al., 2022). Linear probing
involves training a simple linear classifier on top of the
representations produced by the frozen foundation model,
providing a fast and computationally efficient way to assess
the quality of learned features. In contrast, adaptation
techniques employ methods that selectively fine-tune parts
of the foundation model to better tailor its representations
to the downstream task. For example, LoRA introduces
trainable low-rank matrices into selected layers of the model,
enabling more flexible fine-tuning with minimal changes to
the original model parameters. Both approaches can re-
duce the need for extensive fine-tuning and large annotated
datasets, and the limited number of trainable parameters
provides a regularizing effect that helps prevent overfitting.

However, there has been no in-depth analysis of how
the performance of such classifiers depends on the size of
the training set or how robust they are to domains shifts
arising from differences between source and target image
characteristics. This work, which extends previous work
published as a conference paper (Ganz et al., 2025), aims
to address these gaps by systematically investigating the
scaling laws of several state-of-the-art pathology-specific
foundation models for mitotic figure classification. To pro-
vide a comprehensive evaluation, we benchmark foundation
model-based classifiers against several baseline methods
across two publicly available mitotic figure datasets and
evaluate the impact of the training set size using both linear
probing and LoRA.

2. Related Work

The following section outlines the foundational principles
and recent developments in self-supervised learning that
underpin many state-of-the-art models in computational
pathology.

2.1 Self-Supervised Learning

The development of SSL techniques marked a paradigm
shift by enabling the training of large-scale neural networks
on massive unlabeled datasets. In comparison to supervised
learning techniques, where a model is trained on a specific
task based on the available labeled data, SSL learns generic
representations useful across many tasks without any labels
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by utilizing the intrinsic structure of the data. A major
branch of SSL methods in computer vision is built based
upon contrastive learning, which aims to create an embed-
ding space where data points are organized based on their
assumed similarity. SimCLR (Chen et al., 2020a,b) and
MoCo (He et al., 2019; Chen et al., 2020c) are the most
prominent methods in this paradigm, where two views of
the same image, slightly altered by standard augmentation
techniques, such as changing the color or cropping, are to be
mapped to similar representations, whereas representations
from views of different images are pushed further apart in
latent space. Another branch of SSL methods is based on
self-distillation, such as DINO (Caron et al., 2021), where a
teacher-student framework is employed. In this setup, both
the teacher and student networks share the same architec-
ture but receive differently augmented views of the same
image. The student, who only sees a smaller image crop,
is trained to match the output distribution of the teacher,
who sees a larger image crop. The distillation mechanism
in this setup is given by the teacher being updated as an
exponential moving average of the student’s parameters.
Another self-distillation method that builds on DINO is
iBOT (Zhou et al., 2021), where a masked image modeling
objective is added that is applied in the latent space directly,
such that the target reconstruction is not the original image
pixels but the same patches embedded through the teacher
network. DINOv2 (Oquab et al., 2023) further builds on
iBOT and is used by the majority of the recently published
foundation models Chen et al. (2023a); Vorontsov et al.
(2023). They improved the performance by modifying the
training recipe and the architecture with better hyperpa-
rameter and regularizer such as KoLeo (Sablayrolles et al.,
2018) to be more effective and stable at larger model and
data sizes.

Due to the ability to leverage large-scale, unlabeled
datasets, SSL techniques have gained a lot of attention
across many healthcare applications (Khan et al., 2024),
where labels are costly and time-consuming to acquire, such
as clinical language models (Lee et al., 2019; Chen et al.,
2023b; Yang et al., 2022a; Singhal et al., 2023), medical
image analysis (Ma et al., 2024; Chen et al., 2024a; Wang
et al., 2024; Xu et al., 2024; Alber et al., 2025; Filiot et al.,
2024; Dippel et al., 2024), vision and language applications
(Zhang et al., 2020; Wang et al., 2022b; Huang et al., 2023;
Lu et al., 2024; Ahmed et al., 2024; Chen et al., 2024b),
and omics research (Yang et al., 2022b; Celaj et al., 2023;
Zhou et al., 2023).

2.2 Foundation Models in Pathology

Several pathology specific foundation models were published
recently with promising performance across a multitude of
downstream applications (Ciga et al., 2022; Wang et al.,

2022a; Xu et al., 2024; Alber et al., 2025; Filiot et al., 2025;
Charlie et al., 2024; Filiot et al., 2024; Dippel et al., 2024;
Zimmermann et al., 2024), with mitotic figure classification
being included by some of these works (Wang et al., 2022a;
Vorontsov et al., 2023; Zimmermann et al., 2024; Shen
et al., 2024). In particular, Wang et al. (2022a) proposed
SRCL, an SSL method based on MoCov3 (Chen et al.,
2021) along with CTransPath, a model architecture that
combines convolutional layers with the Swin Transfomer
model (Liu et al., 2021). Besides typical downstream tasks
such as tile-level and slide-level classification, they also
evaluated mitotic figure detection on the MIDOG 2021
(Aubreville et al., 2023a) dataset reporting an F1 score of
0.7332 on a custom test split, showing superior performance
of SRCL to other SSL frameworks such as SimCLR and
DINO (Wang et al., 2022a). They used the pre-trained
CTransPath encoder as the backbone for the Faster R-CNN
framework and performed full fine-tuning to adapt to the
downstream task.

Vorontsov et al. (2023) introduced Virchow, a ViT-H
model trained with DINOv2 (Oquab et al., 2023) on a
massive proprietary dataset consisting of 2 billion tiles from
almost 1.5 million slides across 17 tissue types. One of their
downstream evaluation included mitotic figure classification
on the MIDOG++ dataset (Aubreville et al., 2023b). They
extracted patches of size 224×224 for each annotation from
the original regions of interest (ROIs) and performed linear
probing to train a classifier to distinguish between patches
of mitotic figures and non-mitotic figures. They report an
F1 score of 0.787 on a custom test split, outperforming all
other tested foundation models.

Building on Virchow, Zimmermann et al. (2024) released
Virchow2 based on ViT-H and Virchow2G based on ViT-G,
both trained with DINOv2 (Oquab et al., 2023) on 1.7
billion and 1.9 billion tiles, respectively, from 3.1 million
proprietary slides. Compared to the original Virchow model,
they refined the training recipe to better suit pathology
applications, incorporating mixed magnification training
and exploring the effects of increased model and data scale
as well as greater data diversity. They evaluated mitotic
figure classification on the MIDOG++ dataset as well using
the same linear probing protocol and test split as in the
original Virchow work and report improved F1 scores of
0.804 for Virchow2 and 0.836 for Virchow2G.

Shen et al. (2024) introduced the Optimised Mitoses
Generator Network (OMG-Net) to perform mitotic figure
detection. Their 2-stage framework utilized SAM (Kirillov
et al., 2023), a promptable foundation model with zero-
shot capabilities to transfer to new image distributions and
tasks, as first stage to outline candidate cells, followed by
an adapted ResNet18 (He et al., 2015) that distinguishes
mitotic figures. They combined publicly available mitotic
figure datasets such as ICPR (Ludovic et al., 2013), TUPAC
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(Veta et al., 2019), MIDOG++ (Aubreville et al., 2023b),
two fully annotated WSI datasets for canine cutaneous
mast cell tumor (CCMCT) (Bertram et al., 2019) and
for canine mammary carcinoma (CMC) (Aubreville et al.,
2020a), together with an in-house dataset of human soft
tissue tumor (STT) to create a large database with 74620
mitotic figures to train their pipeline. They report F1
scores on a MIDOG++ test split ranging between 0.64
on neuroendocrine tumors to 0.86 for cutaneous mast cell
tumors.

Xu et al. (2024) introduced Prov-GigaPath, a new foun-
dation model for slide-level pretraining. They first trained
a ViT-G architecture on tile-level using DINOv2, followed
by slide-level pretraining using a masked autoencoder (He
et al., 2021) and LongNet (Ding et al., 2023) to scale to
thousands of image-tiles. They trained their model on 1.3
billion tiles from 171, 189 proprietary slides from Providence
Health and Services. Prov-GigaPath was evaluated on 17
genomic prediction tasks and 9 cancer subtyping tasks using
both Providence and TCGA data.

Chen et al. (2024a) introduced UNI, a tile-level founda-
tion model based on ViT-L, trained with DINOv2 on more
than 100 million tiles from 100K proprietary slides. They
evaluated UNI on 34 clinical tasks with varying diagnos-
tic difficulty, such as nuclear segmentation, primary and
metastatic cancer detection, cancer grading and subtyping,
molecular subtyping and several pan-cancer classification
tasks.

Filiot et al. (2023) introduced Phikon, a ViT-B model
trained with iBOT (Zhou et al., 2021), combining masked
image modeling and contrastive learning. They trained their
model on 43.3 million tiles from 6093 TCGA slides. They
evaluated their performance across 17 downstream tasks
including tile-level and slide-level tasks such as subtype
classification, genomic alterations, and survival prediction.

Charlie et al. (2024) introduced H-optimus-0, a ViT-G
model trained with DINOv2 on more than 500K proprietary
slides. There is no exact number of tiles on which they
trained their model but they mentioned more than several
100 million tiles. They evaluated across a wide range of
downstream tasks as well covering tasks such as tissue
classification, mutation prediction, and survival analysis.

2.3 Benchmarking Foundation Models

Due to the increasing availability of large-scale pathology
foundation models of varying size, there is an increasing
demand for unified and objective benchmarks of such mod-
els. Benchmarking these models is essential for providing
fair and transparent comparisons across different architec-
tures, training strategies, and datasets. Recent efforts have
focused on establishing standardized evaluation protocols
and curated test sets that encompass a diverse range of

clinically relevant tasks.
Ma et al. (2025) introduced PathBench as a compre-

hensive benchmarking framework, featuring multi-center
datsets, rigorous leakage prevention, and a standardized
evaluation protocol across 64 diagnosis and prognosis tasks.
They collected 15,888 slides from 8,549 patients and 10
hospitals and evaluated 19 recently published foundation
models using a standardized preprocessing and linear prob-
ing protocol and showed that Virchow2 and H-optimus-1
are the most effective models overall.

Similarly, Campanella et al. (2025) provide a clinical
benchmark dataset collected during standard hospital op-
eration from three health systems including tasks such as
disease detection and biomarker prediction. They evaluated
11 foundation models concluding that all DINO and DINOv2
trained models perform comparably, where H-optimus-0 and
Prov-GigaPath performed significantly better in a few tasks.

Lee et al. (2025) performed a benchmark evaluation
of four foundation models across 20 datasets in different
scenarios where they address the influence of different adap-
tation strategies. In one scenario they tested linear probing,
full fine-tuning, partial fine-tuning, parameter-efficient fine-
tuning (PEFT) such as LoRA (Hu et al., 2022) and fully
supervised learning and concluded that LoRA was both most
efficient and effective when adapting to diverse datasets
within the same classification tasks.

Breen et al. (2025) performed a task-specific bench-
mark study for ovarian cancer subtype classification. They
compared three ImageNet-pretrained encoders and fourteen
foundation models, each trained with 1,864 slides collected
at Leeds Teaching Hospitals NHS Trust and validated on
two external datasets. Their best performing classifier used
the H-optimus-0, although UNI achieved similar results with
only a quarter of the computational cost.

Neidlinger et al. (2024) benchmarked 19 foundation
models on 9,528 slides from lung, colorectal, gastric, and
breast cancers. They evaluated 31 weakly-supervised tasks
related to morphology, biomarkers and prognostication.
They report that the vision-language model CONCH (Lu
et al., 2024) yielded the highest performance, when com-
pared to vision-only models, where Virchow2 is the second
best model. They also evaluated the downstream perfor-
mance under different data scarcity settings. Their re-
sults indicate that while larger and more diverse pretraining
datasets – slide count, patient count, and tissue site diver-
sity – are generally associated with improved downstream
performance, other factors like architecture and dataset
quality also play critical roles. In scarce cohorts with only
75 to 300 patients for a specific downstream task or when
rare biomarkers are involved, performance differences be-
tween models become more pronounced, with all models
showing a decline as fine-tuning data decreases.
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Figure 1: Benchmark study overview. a) Exemplary overview of datasets. Green shows mitotic figures and yellow shows
hard negatives. During inference we extract patches of size 224 × 224 around these annotations for evaluation. b)
Overview of dataset scaling experiments. c) Schematic overview of the cross-domain experiment. We train a model on
each domain separately and evaluate across all domains. d) Overview of evaluated methods.

2.4 Benchmarking Adaptation Strategies

Adapting large-scale foundation models with billions of
parameters to specific downstream tasks remains a signifi-
cant challenge, particularly in resource-constrained settings.
Parameter-efficient fine-tuning techniques, such as LoRA
(Hu et al., 2022), have emerged as promising solutions to
address these challenges by enabling effective adaptation

with minimal additional parameters. Yang et al. (2024)
provide a comprehensive review of LoRA, discussing its
applications and associated challenges. Despite encourag-
ing results reported in studies such as Lee et al. (2025),
the use of LoRA in medical applications remains underex-
plored. For instance, Cui et al. (2024) adapted a ViT-B
model pretrained with DINOv2 using LoRA for surgical
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depth estimation, demonstrating significant improvements
over state-of-the-art models on the SCARED dataset which
collected from da Vinci Xi endoscope surgery. Similarly,
Dausort et al. (2024) investigated the application of LoRA
for cytological classification, evaluating five foundation mod-
els fine-tuned with LoRA across four datasets. Their results
show that LoRA fine-tuning consistently outperforms linear
probing, with particularly strong gains in few-shot scenarios
where labeled data is scarce. Furthermore, in a dataset
scaling experiment, they demonstrated that a CLIP model
fine-tuned with LoRA surpassed the state-of-the-art Hier-
Swin (Cai et al., 2024) model when trained on just 70% of
the data, highlighting the advantages of parameter-efficient
adaptation methods like LoRA when labeled data is limited
or costly to acquire.

Despite these advances, there remains a critical need
to systematically evaluate how foundation models adapt to
clinically relevant tasks such as mitotic figure classification,
particularly when labeled data is limited. The comparative
effectiveness of linear probing and LoRA for mitotic figure
classification under varying data regimes remains an open
question.

3. Methodology

In this work, we address this gap by benchmarking re-
cently published pathology foundation models on the task
of mitotic figure classification. We focus on comparing
linear probing and LoRA-based fine-tuning in a data scal-
ing experiment, highlighting their respective strengths and
limitations in scarce data scenarios. Additionally, we in-
vestigate the robustness of these foundation models and
adaptation strategies in a cross-domain setting, assessing
their generalizability across different tumor types.

3.1 Datasets

Recent publicly available mitotic figure datasets (e.g., CMC
(Aubreville et al., 2020a), CCMCT (Bertram et al., 2019),
MIDOG 2022 (Aubreville et al., 2024), MIDOG++ (Aubre-
ville et al., 2023b)) are larger and more diverse than before,
making them ideal for benchmarking adaptation strategies.
We conduct our analysis on two of these datasets, CCMCT
(Bertram et al., 2019) and MIDOG 2022 (Aubreville et al.,
2024) (Table 1), each chosen for their complementary prop-
erties. The CCMCT dataset is a large-scale resource fo-
cused on a single tumor domain, making it particularly
well-suited for scaling experiments and in-depth analysis
within a consistent biological context. In contrast, MIDOG
2022 is a highly diverse dataset spanning multiple tumor
types, species, and laboratories, providing an ideal bench-
mark for evaluating model robustness and generalization in
cross-domain settings.

3.1.1 CCMCT

The CCMCT dataset consists out of 32 fully annotated
CCMCT WSIs with 44, 880 annotations for mitotic figures
and 27, 965 hard negatives, including both low grade cases
as well as high grade cases. The images were scanned with
an Aperio ScanScope S2 WSI scanner at a resolution of
0.25 microns per pixel. For some examples see Figure 1.

3.1.2 MIDOG 2022

The MIDOG 2022 dataset is a comprehensive multi-tumor,
multi-species, and multi-laboratory collection comprising
354 ROIs with a total of 11, 051 mitotic figures and 9, 501
challenging negative samples. It includes five distinct tu-
mor types: canine cutaneous mast cell tumor (domain A),
scanned at 40x magnification (0.25 microns per pixel) using
the Aperio ScanScope CS2; canine lymphoma (domain B)
scanned with the 3DHistech Panoramic Scan II scanner
at 0.25 microns per pixel; human breast cancer (domain
C), with 50 slides each scanned using Hamamatsu XR,
Hamamatsu S360, and Aperio ScanScope CS2 scanners at
resolutions ranging from 0.23 to 0.25 microns per pixel;
human neuroendocrine tumor (domain D), scanned at 40x
(0.23 microns per pixel) with the Hamamatsu XR; and ca-
nine lung cancer (domain E) digitized with the 3DHistech
Panoramic Scan II scanner at 0.25 microns per pixel. Some
examples are shown in Figure 1.

Table 1: Summary of datasets.
Dataset Images Mitotic figures Hard negatives Tumor types Scanner Magnification
CCMCT 32 WSIs 44,880 27,965 1 1 40x
MIDOG 2022 354 ROIs 11,051 9,501 5 4 40x

3.2 Foundation Models

We selected six state-of-the-art pathology foundation mod-
els (Table 2) that represent a diverse range of architectures,
pretraining strategies, and dataset scales. The models in-
clude Phikon (Filiot et al., 2023), UNI (Chen et al., 2024a),
Virchow (Vorontsov et al., 2023), Virchow2 (Zimmermann
et al., 2024), H-optimus-0 (Charlie et al., 2024), and Prov-
GigaPath (Xu et al., 2024), spanning backbones from ViT-B
to ViT-G and pretraining algorithms such as iBOT and DI-
NOv2. These models were pretrained on datasets ranging
from public sources like TCGA to large proprietary col-
lections, with slide counts varying from 6,093 to over 3
million and tile counts from 43 million to 2 billion. The
selection covers a broad spectrum of model sizes (86M
to 1B parameters), pretraining magnifications, and feature
dimensionalities, providing a comprehensive benchmark for
mitotic figure classification across different data and model
scales. Additionally, we compare the pathology foundation
models with ViT-S DINOv3 (Siméoni et al., 2025), a com-
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pact self-supervised Vision Transformer from the DINOv3
family. Trained on large-scale web datasets, it serves as a
general-purpose visual encoder that produces robust, high-
quality dense representations transferable across diverse
vision tasks without task-specific fine-tuning.

3.3 Linear Probing
Linear probing is a widely adopted and straightforward ap-
proach for evaluating the quality of representations learned
by pre-trained models. In this method, the parameters of a
pre-trained model θ are frozen, and only a linear classifier is
trained on top of the extracted features to adapt the model
to a specific downstream task. Given an input x, the model
computes feature representations z = fθ(x), which are then
passed to a linear layer. The output of the classifier is given
by:

y = Wz (1)

where z ∈ Rn is the feature vector, and W ∈ Rc×n the
weight matrix of the linear classifier, with n the number
of extracted features and c the number of classes. Linear
probing serves as a standard benchmark to assess how well
the pre-trained features can be separated by a simple linear
decision boundary, providing insight into the generalizability
and utility of the learned representations for new tasks
without updating the backbone model. This approach is
particularly valuable in scenarios with limited labeled data,
as it requires training only a small number of parameters.

3.4 Low-Rank Adaptation
To explore the benefits of fine-tuning foundation models
beyond the classification head, we employ Low-Rank Adap-
tation (LoRA) (Hu et al., 2022), a parameter-efficient fine-
tuning technique. LoRA updates pre-trained model weights
using low-rank decomposition. Instead of directly modify-
ing the full weight matrix W ∈ Rm×n, LoRA introduces a
weight correction ∆W ∈ Rm×n, which is expressed as the
product of two smaller matrices: A ∈ Rr×n and B ∈ Rm×r,
where r is the chosen rank and typically much smaller than
m or n. The forward pass is then modified as follows:

h = Wx + γ∆Wx = Wx + γBAx

Here, h denotes the hidden state at a given layer, x is
the input to that layer, and γ is a scaling factor. During ini-
tialization, A is randomly initialized, while B is set to zero.
Only the entries of these low-rank matrices are updated
during training, while the original model weights remain
frozen, significantly reducing the number of trainable pa-
rameters. At inference time, the effective weight matrix is
simply the sum of the original and the low-rank update, so
the computational cost remains unchanged.

3.5 Baselines

We compare the performance of the foundation models to
multiple baselines. First, we use the two widely adopted
feature extractors ResNet50 and ViT-H, pretrained on Im-
ageNet, to generate embeddings for linear probing in the
same manner as with the foundation models. Additionally,
we train four models starting from ImageNet pretraining
in a fully supervised setting. We select a ResNet50 and
three Vision Transformer (ViT-S, ViT-B, ViT-H) covering
a range of model scales to directly compare with their foun-
dation model counterparts. For these supervised baselines,
standard image augmentations are applied during training,
including random color jitter, Gaussian blur, flipping, and
random rotations. This setup allows for a direct compari-
son between foundation model adaptation strategies and
traditional supervised learning approaches.

3.6 Dataset Scaling Experiment

To systematically evaluate how foundation models and adap-
tation strategies perform under varying data availability, we
conducted a dataset scaling experiment using both the
large-scale, single-domain CCMCT dataset and the diverse,
multi-domain MIDOG 2022 dataset. For each model, we
trained on four different fractions of the available data
(0.1%, 1%, 10%, and 100%), enabling us to assess model
robustness and adaptation in both data-rich and data-scarce
scenarios. To enhance the statistical reliability of our find-
ings, we employed five-fold Monte Carlo cross-validation for
each combination of model and training set size, resulting in
20 independent training runs per model. In the beginning,
20% of all annotations from the respective dataset were
randomly selected as the test set to ensure a fair comparison
between the different fractions of the data. Then, for each
run, we set aside 20% of the remaining training annotations
for validation. We used a case-level split to avoid data
leakage between the splits. All models were trained and
evaluated on identical splits to ensure fair comparison be-
tween the models. It is important to note that, due to the
smaller overall size of MIDOG 2022, the absolute number of
training samples at each percentage level was substantially
lower than in CCMCT, providing a stringent test of model
performance in low-data regimes.

3.7 Cross-Domain Experiment

To further investigate the generalization capabilities of the
models, we performed a cross-domain experiment using the
MIDOG 2022 dataset, which is especially suitable for multi-
domain evaluation. In this setup, we used each of the five
tumor domains as the training domain, while using the re-
maining domains exclusively for testing, thereby simulating
real-world scenarios where models are deployed on previ-
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Table 2: Summary of pathology foundation models.
Model Backbone Pretraining algorithm Parameters Data source Pretraining magnifications Slide count Tile count Patch features
Phikon ViT-B iBOT 86M TCGA 20x 6093 43,3M 768
UNI ViT-L DINOv2 304M Proprietary 20x 100K 100M 1024
Virchow ViT-H DINOv2 632M Proprietary 20x 1.5M 2B 1280
Virchow2 ViT-H DINOv2 632M Proprietary 5x, 10x, 20x, 40x 3.1M 1.7B 1280
H-optimus-0 ViT-G DINOv2 1B Proprietary 20x 500K NA 1536
Prov-GigaPath ViT-G DINOv2 1B Proprietary 20x 170K 1.3B 1536

ously unseen data distributions. For in-domain evaluation,
20% of the data from the training domain was withheld and
included as further test set for in-domain evaluation. As
with the scaling experiment, we conducted five independent
training runs per domain and per model, resulting in a total
of 25 training sessions per model. This experimental design
allows for a comprehensive assessment of both in-domain
and cross-domain robustness, leveraging the diversity of
MIDOG 2022.

3.8 Implementation Details

For the mitotic figure classification task we define c = 2 to
distinguish between mitotic figures and mitotic figure look-
alikes (hard negatives), which both datasets provide. We
extracted image patches of size 224 × 224 pixels centered
around the mitotic figure and hard negative annotations
(Vorontsov et al., 2023). The patch embeddings for the lin-
ear probing experiments were created by passing the patches
through the frozen encoder of each model. The patches
were normalized according to the means and standard de-
viations provided in the respective works. No additional
data augmentation was applied. For Virchow and Virchow2,
these patch embeddings were created by concatenating the
class token and the mean across all other 256 predicted
patch tokens, as described in Vorontsov et al. (2023). For
all other models, only the class token was used (Vorontsov
et al., 2023). We use the linear probing implementation by
Chen et al. (2024a).

We apply LoRA to the query, key, and value projection
layer and the output projection layer of the attention blocks
and the first and second fully connected layers in the multi-
layer perceptron (MLP) sections. The rank is set to 16, the
scaling factor is set to 16, the dropout is set to 0.1.

The fully supervised learning of the baselines and the
LoRA-adaptation of the foundation models is performed
using the Adam optimizer with default parameter values
(β1 = 0.9, β2 = 0.999, ϵ = 1e − 8), batch size of 16,
patch size of 224×224, and standard image augmentations.
Binary cross-entropy loss is adopted as loss function. In
each pseudo epoch, patches are sampled randomly with
50% of the patches containing mitotic figures, and the
other 50% containing either a hard negative patch or a
completely random patch, each with 25% probability. The

pseudo-epoch length is set to 1280. We train the models
for 100 pseudo epochs using a one-cycle learning rate policy
(Smith and Topin, 2017), including a linear warum-up phase
followed by cosine annealing, with a maximum learning rate
of 10−4, and select the best model retrospectively based
on the validation loss per epoch. During inference, we
evaluate only patches that contain annotations for mitotic
figures or hard negatives. The classification experiments are
evaluated with balanced accuracy and weighted F1 scores
due to the class imbalance between mitotic figures and
hard negatives, and additionally with the AUROC score. All
experiments were executed on a workstation equipped with
a single NVIDIA RTX 3090 GPU.

4. Results

4.1 Data Scaling Experiment

The results of the data scaling experiment are shown in
Figure 2 and Figure 3. The experiments on both the
single-domain CCMCT and the multi-domain MIDOG 2022
datasets consistently demonstrate the superior adaptability
and data efficiency of pathology foundation models, par-
ticularly when adapted with parameter efficient fine-tuning
methods such as LoRA. Across both datasets, foundation
models outperform traditional feature extractors such as
ResNet50 and ViT-H pretrained on ImageNet at every data
regime, with the performance gap being most pronounced
in low-data settings.

On the CCMCT dataset, which represents a large-scale,
single-domain scenario, foundation models fine-tuned with
LoRA achieve substantial gains in AUROC as the training
set size increases. Already at the smallest data fraction
of 0.1% the LoRA adapted foundation models surpass the
baselines, and this advantage becomes more pronounced
as more data is made available. At full data scale, these
models approach AUROC values of 0.9, while baselines
plateau at lower levels. Interestingly, the performance of
LoRA fine-tuned foundation models already reaches near
full-data scale performance already at 10% of the available
data, especially with the H-optimus-0 model. The ResNet50
End-to-End model consistently outperforms all foundation
models adapted with standard linear probing and is only
outperformed by Virchow2 and H-optimus-0 adapted with
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Figure 2: Results of the data scaling experiment on the CCMCT dataset. (*) indicates statistical significance (α < 0.05)
between the pooled scores of LoRA and LinProb models.
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Figure 3: Results of the data scaling experiment on the MIDOG 2022 dataset. (*) indicates statistical significance
(α < 0.05) between the pooled scores of LoRA and LinProb models.

LoRA at full-data scale (Table 3). The ViT End-to-End
variants show similar performance across the different data
sizes with a clear advantage of the more compact ViT-S
model at all data scales. However, their AUROC scores are
considerably lower compared to the ResNet50 End-to-End
model and moderately lower compared to their foundation
model counterparts, especially for ViT-B and ViT-H. The
performance of adapted ViT-S DINOv3 model lacks behind
the pathology foundation models in both linear probing and
LoRA settings. Even in the LoRA setting, the performance
cannot match its ViT-S End-to-End counterpart, indicating
that the domain shift from general purpose weights to
histopathology data requires more extensive adaptation
than LoRA fine-tuning.

A similar trend is observed on the MIDOG 2022 dataset,
which is characterized by greater diversity in tumor types,
species, and imaging conditions. Compared to CCMCT, the
more challenging conditions and reduced absolute training

sample sizes in MIDOG 2022 are reflected in generally lower
AUROC scores, particularly for linear probing baselines and
foundation models at the lowest data regimes (0.1% to 1%).
However, the benefits of foundation models with LoRA
adaptation become more clear at higher data fractions (1%
to 100%), where these models substantially outperform
their linear probing counterparts. The only exceptions are
UNI and Phikon, which lag slightly behind at full data scale.
Again, the ResNet50 End-to-End baseline outperforms linear
probing of all foundation models and is only outperformed
by Virchow2 and H-optimus-0 adapted with LoRA at full
data scale (Table 4).

For each data scale, we pooled the performance scores
from all foundation models fine-tuned using linear probing
or LoRA, yielding 35 paired observations per adaptation
strategy (7 models × 5 repetitions). To assess whether
performance differed between the two adaptation strategies,
we conducted Wilcoxon signed-rank tests Wilcoxon (1945).
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Across all data scales, the results indicated that linear
probing achieved significantly lower scores than LoRA (α =
0.05).

Table 3: Results at 100 % dataset size of CCMCT dataset.
Model AUROC Balanced ACC Weighted F1
ResNet50 (End-To-End) 0.87±0.01 0.79±0.01 0.78±0.01
ViT-S (End-To-End) 0.82±0.01 0.73±0.01 0.72±0.03
ViT-B (End-To-End) 0.79±0.01 0.70±0.02 0.71±0.03
ViT-H (End-To-End) 0.78±0.03 0.67±0.04 0.67±0.11
ResNet50 (LinProb) 0.69±0.00 0.61±0.00 0.65±0.00
ViT-H (LinProb) 0.71±0.00 0.61±0.00 0.65±0.00
ViT-S DINOv3 (LinProb) 0.68±0.00 0.57±0.00 0.60±0.00
Phikon (LinProb) 0.81±0.00 0.71±0.00 0.74±0.00
UNI (LinProb) 0.83±0.00 0.73±0.00 0.76±0.00
Virchow (LinProb) 0.84±0.00 0.75±0.00 0.78±0.00
Virchow2 (LinProb) 0.85±0.00 0.76±0.00 0.78±0.00
Prov-GigaPath (LinProb) 0.83±0.00 0.74±0.00 0.77±0.00
H-optimus-0 (LinProb) 0.84±0.00 0.75±0.00 0.78±0.00
ViT-S DINOv3 (LoRA) 0.78±0.12 0.70±0.09 0.71±0.09
Phikon (LoRA) 0.86±0.01 0.77±0.01 0.78±0.01
UNI (LoRA) 0.87±0.01 0.78±0.01 0.78±0.01
Virchow (LoRA) 0.84±0.09 0.75±0.07 0.76±0.06
Virchow2 (LoRA) 0.88±0.01 0.78±0.01 0.80±0.01
Prov-GigaPath (LoRA) 0.85±0.06 0.76±0.05 0.77±0.04
H-optimus-0 (LoRA) 0.88±0.01 0.79±0.02 0.80±0.01

Table 4: Results at 100% dataset size of MIDOG dataset.
Model AUROC Balanced ACC Weighted F1
ResNet50 (End-To-End) 0.87±0.009 0.79±0.009 0.78±0.010
ViT-S (End-To-End) 0.82±0.010 0.73±0.012 0.72±0.027
ViT-B (End-To-End) 0.79±0.013 0.70±0.021 0.71±0.025
ViT-H (End-To-End) 0.80±0.035 0.70±0.051 0.70±0.087
ResNet50 (LinProb) 0.69±0.003 0.61±0.002 0.65±0.002
ViT-H (LinProb) 0.71±0.003 0.61±0.002 0.65±0.002
ViT-S DINOv3 (LinProb) 0.68±0.002 0.57±0.003 0.60±0.005
Phikon (LinProb) 0.81±0.001 0.71±0.002 0.74±0.002
UNI (LinProb) 0.83±0.001 0.73±0.003 0.76±0.002
Virchow (LinProb) 0.84±0.001 0.75±0.002 0.78±0.002
Virchow2 (LinProb) 0.85±0.002 0.76±0.001 0.78±0.001
Prov-GigaPath (LinProb) 0.83±0.001 0.74±0.002 0.77±0.002
H-optimus-0 (LinProb) 0.84±0.001 0.75±0.002 0.78±0.002
ViT-S DINOv3 (LoRA) 0.78±0.115 0.70±0.092 0.71±0.095
Phikon (LoRA) 0.80±0.128 0.73±0.102 0.73±0.105
UNI (LoRA) 0.84±0.090 0.76±0.072 0.76±0.072
Virchow (LoRA) 0.87±0.067 0.78±0.060 0.79±0.051
Virchow2 (LoRA) 0.89±0.011 0.80±0.022 0.81±0.014
Prov-GigaPath (LoRA) 0.87±0.047 0.79±0.044 0.79±0.037
H-optimus-0 (LoRA) 0.90±0.019 0.81±0.022 0.81±0.015

4.2 Cross-Domain Experiment
The results of the cross-domain experiment are summa-
rized in Table 5 and Figure 4. As expected, all models
perform better in-domain than out-of-domain, reflecting
the inherent challenge of domain shifts in histopathology.
Traditional feature extractors such as ResNet50 and ViT-H
pretrained on ImageNet show limited generalization, with

out-of-domain AUROC scores dropping to 0.53 and 0.56,
respectively.

Foundation models adapted with standard linear probing
demonstrate moderate improvements, with out-of-domain
AUROC values in the range of 0.61-0.66 (Table 5). However,
the most substantial gains are observed when foundation
models are fine-tuned with LoRA. In this setting, models
such as H-optimus-0, Virchow2, and Prov-Gigapath achieve
out-of-domain AUROC scores of 0.88, 0.87, and 0.85 re-
spectively, with only a minimal drop compared to their
in-domain performance. This trend is consistent across
all evaluation metrics, including balanced accuracy and
weighted F1, highlighting the effectiveness of LoRA in en-
hancing cross-domain robustness.

We performed planned pairwise comparisons to as-
sess whether the performance differences between the lin-
ear probing and LoRA models were statistically signifi-
cant, and whether LoRA performance differed from the
ResNet50 End-to-End baseline, yielding 14 model compar-
isons. For each in-domain comparison, we analyzed 25
paired observations (5 domains × 5 repetitions), and for
each out-of-domain comparison, 100 paired observations
(5 domains × 4 out-of-domain evaluations × 5 repeti-
tions). All planned comparisons were conducted separately
for each evaluation metric and domain setting (in-domain
and out-of-domain) using the Wilcoxon signed-rank test.
Resulting p-values were adjusted for multiple comparisons
using the Holm procedure (Holm, 1979) for each metric
and domain setting. Nearly all LoRA models significantly
outperformed their linear-probing counterparts for every
evaluation metric, except for Phikon, UNI, and Virchow,
where not all differences were statistically significant. The
general-purpose ViT-S DINOv3 model was also significantly
outperformed by the ResNet50 End-to-End baseline. The
strongest improvements over the ResNet50 End-to-End
baseline were observed for Virchow2 and H-optimus-0,
where both F1-scores and AUROC metrics differed sig-
nificantly.

Looking at individual scenarios in Figure 4 we can clearly
observe the strong gains of LoRA adaptation for the foun-
dation models. Especially when looking at models such
as Prov-Gigapath, H-opimus-0, and Virchow2 where the
LoRA-adapted models nearly closed the out-of-domain per-
formance gap between any scenario. Despite strong gains
with LoRA some scenarios were still particularly challenging.
Domain D (human neuroendocrine tumor) and E (canine
lung cancer) were most challenging for all models. Training
on either of these domains led to the worst performances
across all models, with the biggest differences observed in
Phikon, UNI, and Virchow.
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Table 5: Results of the cross-domain experiment. The results are averaged across all in-domain and out-domain scenarios.
Displayed are the mean score and the standard deviation. (∗) indicates statistically significant differences compared
to the LinProb counterpart (α = 0.05). (†) indicates statistically significant differences compared to the ResNet50
End-to-End baseline (α = 0.05).

Model AUROC Balanced ACC Weighted F1
In-domain Out-of-domain In-domain Out-of-domain In-domain Out-of-domain

ResNet50 (End-to-End) 0.87±0.04 0.74 ±0.07 0.79±0.03 0.67±0.06 0.81±0.03 0.67±0.09
ViT-S (End-to-End) 0.84±0.03 0.76±0.04 0.74±0.03 0.68±0.04 0.75±0.02 0.67±0.06
ViT-B (End-to-End) 0.83±0.03 0.75±0.05 0.75±0.03 0.67±0.04 0.76±0.04 0.65±0.07
ViT-H (End-to-End) 0.83±0.03 0.75±0.04 0.75±0.02 0.66±0.04 0.76±0.03 0.65±0.08
ResNet50 (LinProb) 0.63±0.04 0.53±0.03 0.58±0.02 0.51±0.01 0.62±0.05 0.48±0.08
ViT-H (LinProb) 0.68±0.05 0.56±0.04 0.59±0.03 0.53±0.02 0.63±0.05 0.49±0.10
ViT-S DINOv3 (LinProb) 0.65±0.06 0.58±0.04 0.56±0.02 0.53±0.03 0.58±0.07 0.47±0.12
Phikon (LinProb) 0.76±0.03 0.61±0.05 0.68±0.03 0.56±0.04 0.71±0.03 0.55±0.09
UNI (LinProb) 0.76±0.03 0.64±0.05 0.69±0.03 0.59±0.03 0.71±0.02 0.59±0.06
Virchow (LinProb) 0.79±0.04 0.66±0.06 0.72±0.04 0.60±0.03 0.74±0.02 0.60±0.06
Virchow2 (LinProb) 0.79±0.04 0.66±0.05 0.71±0.04 0.60±0.04 0.74±0.02 0.59±0.07
Prov-GigaPath (LinProb) 0.79±0.03 0.66±0.07 0.71±0.03 0.61±0.04 0.74±0.02 0.61±0.05
H-optimus-0 (LinProb) 0.79±0.04 0.66±0.07 0.72±0.03 0.60±0.05 0.74±0.02 0.61±0.07
ViT-S DINOv3 (LoRA) 0.82±0.05∗ 0.75±0.05∗ 0.74±0.04∗† 0.68±0.04∗† 0.74±0.04∗† 0.67±0.06∗†

Phikon (LoRA) 0.81±0.05∗ 0.76±0.09∗ 0.74±0.07 0.69±0.07 0.76±0.07 0.68±0.09
UNI (LoRA) 0.86±0.05∗† 0.80±0.06∗† 0.78±0.05 0.72±0.06 0.79±0.04∗ 0.72±0.08∗

Virchow (LoRA) 0.86±0.08∗† 0.82±0.08∗† 0.78±0.06 0.75±0.07 0.79±0.07 0.75±0.09
Virchow2 (LoRA) 0.89±0.02∗† 0.87±0.02∗† 0.82±0.02∗ 0.79±0.03∗ 0.83±0.01∗† 0.80±0.05∗†

Prov-GigaPath (LoRA) 0.89±0.02∗† 0.85±0.04∗† 0.80±0.03∗ 0.76±0.05∗ 0.81±0.02∗ 0.77±0.06∗

H-optimus-0 (LoRA) 0.90±0.02∗† 0.88±0.02∗† 0.82±0.02∗ 0.80±0.03∗ 0.83±0.01∗† 0.81±0.04∗†

5. Discussion

Our systematic benchmarking of pathology foundation mod-
els for mitotic figure classification across both single-domain
and multi-domain datasets provides several important in-
sights for the field of computational pathology. Most no-
tably, our results demonstrate that foundation models, par-
ticularly when adapted with parameter-efficient fine-tuning
methods such as LoRA, offer substantial advantages in both
data-scarce and cross-domain scenarios.

The data scaling experiments reveal that foundation
models consistently outperform traditional feature extrac-
tors, with the performance gap being most pronounced
in low-data regimes. This suggests that rich, transferable
representations learned during large-scale pretraining can be
effectively leveraged for a new task such as mitotic figure
classification when only a small amount of labeled data is
available. The ability of LoRA-adapted models to reach
near full-data scale performance with as little as 10% of the
available data highlights the practical value of parameter-
efficient adaptation strategies for real-world applications
where annotation is often costly and time-consuming. Fur-
thermore, the comparison between fully fine-tuning large
vision transformers such as ViT-B and ViT-H and their

LoRA-adapted counterparts highlights how efficient LoRA
acts as a regularization when fine-tuning such large-scale
models to a new task. On the other hand, the more com-
monly used linear probing does not utilize the full potential
of foundation models, demonstrating inferior performance
to LoRA-adapted models and fully fine-tuned traditional
architectures such as ResNet50.

In the more challenging, heterogeneous setting of the
MIDOG 2022 dataset, foundation models again demon-
strate superior robustness, with LoRA adaptation further
narrowing the gap between in-domain and out-of-domain
performance. They maintain high evaluation scores even
when tested on previously unseen tumor types, especially
models such as Virchow2 and H-optimus-0 where cross-
domain results are very similar in every scenario. This
robustness is critical for clinical deployment, where models
should be able to generalize to new data distributions and
avoid overfitting to specific domains.

Adapting foundation models with parameter-efficient
methods like LoRA offers a strong compute–performance
trade-off. LoRA updates a small fraction of weights (typi-
cally ¡5%), significantly reducing memory and training time
compared to full fine-tuning. While linear probing is most
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Figure 4: Results of the cross-domain experiment. We show each individual scenario with its averaged AUROC score
over all training sessions. A: canine mast cell tumor. B: canine lymphoma. C: human breast cancer. D: human
neuroendocrine tumor. E: canine lung cancer.

efficient, LoRA provides substantial performance gains with
only modest additional compute. This makes adapted foun-
dation models a pragmatic choice over training large Vision
Transformers end-to-end, especially when compute, time,
or data is limited. They offer strong accuracy with re-
duced training costs and deployment complexity. Rigorous

quantification of these efficiencies is a key area for future
research.

While we freeze or adapt transformer layers uniformly
in our experiments, the need for adaptation is likely het-
erogeneous across depth. Early blocks tend to encode low-
level features (e.g., edges, textures), whereas deeper blocks
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capture higher-level, task- and domain-specific concepts.
Under domain shift, both strata can degrade. Early blocks
may require modest recalibration when low-level statistics
shift (e.g., noise, color, resolution), while later blocks may
demand stronger adaptation to realign semantic represen-
tations. This motivates a more in-depth investigation into
feature discrimination across model depth for future work
(Ammeling et al., 2025).

Despite the promising results, several limitations should
be acknowledged. First, while our experiments cover a
range of diverse foundation models and common adapta-
tion strategies, the scope of this benchmark study is limited
to mitotic figure classification. The generalizability to other
specific histopathological tasks, remains to be established.
Second, mitotic figure classification is often performed as
a secondary stage after detecting initial candidate objects
through a detection or segmentation pipeline, hence the
integration into a full mitotic figure detection pipeline and
its evaluation needs further work for full integration into
clinical practice. Third, while LoRA proved highly effective,
we did not exhaustively explore the effects of the hyperpa-
rameter or other parameter-efficient fine-tuning methods
or combinations thereof, which could yield further improve-
ments.

The ResNet50 end-to-end baseline performed strongly,
sometimes outperforming foundation models with linear
probing or LoRA adaptation. This suggests that, in some
cases, traditional architectures with full fine-tuning can still
be competitive, especially when sufficient labeled data is
available. Future work should further investigate the condi-
tions under which foundation models provide the greatest
benefits over conventional approaches.

6. Conclusion

Our findings support the growing consensus that foundation
models, when paired with efficient adaptation strategies, are
poised to transform computational pathology by enabling
robust, scalable solutions that generalize across tasks and
domains. The demonstrated data efficiency and cross-
domain robustness of LoRA-adapted models are particularly
relevant for clinical translation, where data heterogeneity
and annotation scarcity are persistent challenges. Future
research should extend these benchmarks to additional tasks,
datasets, and adaptation methods, and explore strategies
for further improving out-of-domain generalization.
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Appendix A. Additional Results from Dataset
Scaling Experiments

Table 6: Results at 0.1% dataset size of CCMCT dataset.
Model AUROC Balanced ACC Weighted F1
ResNet50 (End-To-End) 0.69±0.03 0.63±0.03 0.59±0.07
ViT-S (End-To-End) 0.68±0.03 0.62±0.03 0.61±0.07
ViT-B (End-To-End) 0.61±0.02 0.58±0.02 0.56±0.07
ViT-H (End-To-End) 0.62±0.03 0.58±0.02 0.57±0.02
ResNet50 (LinProb) 0.57±0.04 0.54±0.02 0.58±0.02
ViT-H (LinProb) 0.57±0.03 0.55±0.02 0.58±0.03
ViT-S DINOv3 (LinProb) 0.58±0.04 0.55±0.03 0.58±0.03
Phikon (LinProb) 0.61±0.03 0.58±0.03 0.61±0.03
UNI (LinProb) 0.64±0.02 0.60±0.02 0.62±0.02
Virchow (LinProb) 0.62±0.03 0.58±0.02 0.61±0.02
Virchow2 (LinProb) 0.62±0.03 0.58±0.02 0.61±0.03
Prov-GigaPath (LinProb) 0.65±0.02 0.61±0.02 0.63±0.01
H-optimus-0 (LinProb) 0.63±0.03 0.60±0.02 0.62±0.03
ViT-S DINOv3 (LoRA) 0.60±0.02 0.57±0.02 0.54±0.05
Phikon (LoRA) 0.72±0.04 0.65±0.04 0.65±0.07
UNI (LoRA) 0.70±0.04 0.64±0.03 0.60±0.08
Virchow (LoRA) 0.73±0.06 0.66±0.05 0.66±0.09
Virchow2 (LoRA) 0.75±0.03 0.69±0.03 0.69±0.03
Prov-GigaPath (LoRA) 0.74±0.03 0.68±0.03 0.66±0.05
H-optimus-0 (LoRA) 0.71±0.04 0.65±0.03 0.65±0.05

Table 7: Results at 1% dataset size of CCMCT dataset.
Model AUROC Balanced ACC Weighted F1
ResNet50 (End-To-End) 0.75±0.02 0.68±0.02 0.70±0.02
ViT-S (End-To-End) 0.74±0.01 0.67±0.01 0.67±0.03
ViT-B (End-To-End) 0.67±0.06 0.62±0.05 0.60±0.07
ViT-H (End-To-End) 0.68±0.03 0.62±0.03 0.61±0.03
ResNet50 (LinProb) 0.58±0.01 0.55±0.01 0.58±0.01
ViT-H (LinProb) 0.65±0.01 0.60±0.01 0.63±0.01
ViT-S DINOv3 (LinProb) 0.65±0.01 0.59±0.01 0.62±0.01
Phikon (LinProb) 0.67±0.01 0.62±0.01 0.64±0.01
UNI (LinProb) 0.69±0.02 0.64±0.01 0.66±0.01
Virchow (LinProb) 0.70±0.01 0.64±0.01 0.66±0.01
Virchow2 (LinProb) 0.69±0.01 0.64±0.01 0.66±0.01
Prov-GigaPath (LinProb) 0.71±0.01 0.65±0.01 0.67±0.01
H-optimus-0 (LinProb) 0.70±0.01 0.64±0.01 0.67±0.01
ViT-S DINOv3 (LoRA) 0.64±0.07 0.59±0.06 0.55±0.13
Phikon (LoRA) 0.79±0.07 0.72±0.05 0.73±0.04
UNI (LoRA) 0.76±0.07 0.69±0.06 0.70±0.05
Virchow (LoRA) 0.80±0.08 0.71±0.07 0.72±0.10
Virchow2 (LoRA) 0.82±0.01 0.75±0.01 0.76±0.00
Prov-GigaPath (LoRA) 0.82±0.00 0.74±0.02 0.75±0.02
H-optimus-0 (LoRA) 0.80±0.07 0.73±0.06 0.74±0.06

Table 8: Results at 10% dataset size of CCMCT dataset.
Model AUROC Balanced ACC Weighted F1
ResNet50 (End-To-End) 0.84±0.02 0.75±0.02 0.75±0.03
ViT-S (End-To-End) 0.81±0.02 0.70±0.03 0.66±0.07
ViT-B (End-To-End) 0.71±0.09 0.63±0.07 0.61±0.04
ViT-H (End-To-End) 0.75±0.04 0.67±0.06 0.62±0.13
ResNet50 (LinProb) 0.67±0.00 0.61±0.00 0.64±0.00
ViT-H (LinProb) 0.71±0.00 0.62±0.01 0.65±0.01
ViT-S DINOv3 (LinProb) 0.68±0.00 0.57±0.01 0.60±0.01
Phikon (LinProb) 0.78±0.00 0.69±0.00 0.72±0.00
UNI (LinProb) 0.78±0.00 0.70±0.00 0.72±0.00
Virchow (LinProb) 0.79±0.00 0.71±0.00 0.73±0.00
Virchow2 (LinProb) 0.78±0.00 0.70±0.00 0.72±0.00
Prov-GigaPath (LinProb) 0.78±0.01 0.70±0.00 0.73±0.00
H-optimus-0 (LinProb) 0.79±0.00 0.71±0.01 0.74±0.01
ViT-S DINOv3 (LoRA) 0.74±0.12 0.67±0.09 0.67±0.11
Phikon (LoRA) 0.77±0.08 0.70±0.07 0.69±0.08
UNI (LoRA) 0.82±0.06 0.74±0.05 0.74±0.06
Virchow (LoRA) 0.84±0.06 0.76±0.05 0.76±0.05
Virchow2 (LoRA) 0.85±0.03 0.76±0.03 0.78±0.02
Prov-GigaPath (LoRA) 0.86±0.01 0.77±0.01 0.78±0.01
H-optimus-0 (LoRA) 0.87±0.02 0.78±0.03 0.79±0.02

Table 9: Results at 100% dataset size of CCMCT dataset.
Model AUROC Balanced ACC Weighted F1
ResNet50 (End-To-End) 0.84±0.02 0.75±0.02 0.75±0.03
ViT-S (End-To-End) 0.81±0.02 0.70±0.03 0.66±0.07
ViT-B (End-To-End) 0.71±0.09 0.63±0.07 0.61±0.04
ViT-H (End-To-End) 0.75±0.04 0.67±0.06 0.62±0.13
ResNet50 (LinProb) 0.67±0.00 0.61±0.00 0.64±0.00
ViT-H (LinProb) 0.71±0.00 0.62±0.01 0.65±0.01
ViT-S DINOv3 (LinProb) 0.68±0.00 0.57±0.01 0.60±0.01
Phikon (LinProb) 0.78±0.00 0.69±0.00 0.72±0.00
UNI (LinProb) 0.78±0.00 0.70±0.00 0.72±0.00
Virchow (LinProb) 0.79±0.00 0.71±0.00 0.73±0.00
Virchow2 (LinProb) 0.78±0.00 0.70±0.00 0.72±0.00
Prov-GigaPath (LinProb) 0.78±0.01 0.70±0.00 0.73±0.00
H-optimus-0 (LinProb) 0.79±0.00 0.71±0.01 0.74±0.01
ViT-S DINOv3 (LoRA) 0.74±0.12 0.67±0.09 0.67±0.11
Phikon (LoRA) 0.77±0.08 0.70±0.07 0.69±0.08
UNI (LoRA) 0.82±0.06 0.74±0.05 0.74±0.06
Virchow (LoRA) 0.84±0.06 0.76±0.05 0.76±0.05
Virchow2 (LoRA) 0.85±0.03 0.76±0.03 0.78±0.02
Prov-GigaPath (LoRA) 0.86±0.01 0.77±0.01 0.78±0.01
H-optimus-0 (LoRA) 0.87±0.02 0.78±0.03 0.79±0.02
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Table 10: Results at 0.1% dataset size of MIDOG dataset.
Model AUROC Balanced ACC Weighted F1
ResNet50 (End-To-End) 0.69±0.03 0.63±0.03 0.59±0.07
ViT-S (End-To-End) 0.68±0.03 0.62±0.03 0.61±0.07
ViT-B (End-To-End) 0.61±0.02 0.58±0.02 0.56±0.07
ViT-H (End-To-End) 0.59±0.07 0.56±0.04 0.51±0.09
ResNet50 (LinProb) 0.57±0.04 0.54±0.02 0.58±0.02
ViT-H (LinProb) 0.57±0.03 0.55±0.02 0.58±0.03
ViT-S DINOv3 (LinProb) 0.58±0.04 0.55±0.03 0.58±0.03
Phikon (LinProb) 0.61±0.03 0.58±0.03 0.61±0.03
UNI (LinProb) 0.64±0.02 0.60±0.02 0.62±0.02
Virchow (LinProb) 0.62±0.03 0.58±0.02 0.61±0.02
Virchow2 (LinProb) 0.62±0.03 0.58±0.02 0.61±0.03
Prov-GigaPath (LinProb) 0.65±0.02 0.61±0.02 0.63±0.01
H-optimus-0 (LinProb) 0.63±0.03 0.60±0.02 0.62±0.03
ViT-S DINOv3 (LoRA) 0.60±0.02 0.57±0.02 0.54±0.05
Phikon (LoRA) 0.64±0.11 0.58±0.08 0.54±0.13
UNI (LoRA) 0.63±0.08 0.57±0.07 0.50±0.12
Virchow (LoRA) 0.67±0.14 0.60±0.08 0.56±0.14
Virchow2 (LoRA) 0.67±0.11 0.60±0.10 0.55±0.16
Prov-GigaPath (LoRA) 0.65±0.12 0.59±0.09 0.52±0.15
H-optimus-0 (LoRA) 0.65±0.12 0.58±0.08 0.52±0.14

Table 11: Results at 1% dataset size of MIDOG dataset.
Model AUROC Balanced ACC Weighted F1
ResNet50 (End-To-End) 0.75±0.02 0.68±0.02 0.70±0.02
ViT-S (End-To-End) 0.74±0.01 0.67±0.01 0.67±0.03
ViT-B (End-To-End) 0.67±0.06 0.62±0.05 0.60±0.07
ViT-H (End-To-End) 0.70±0.03 0.63±0.03 0.61±0.04
ResNet50 (LinProb) 0.58±0.01 0.55±0.01 0.58±0.01
ViT-H (LinProb) 0.65±0.01 0.60±0.01 0.63±0.01
ViT-S DINOv3 (LinProb) 0.65±0.01 0.59±0.01 0.62±0.01
Phikon (LinProb) 0.67±0.01 0.62±0.01 0.64±0.01
UNI (LinProb) 0.69±0.02 0.64±0.01 0.66±0.01
Virchow (LinProb) 0.70±0.01 0.64±0.01 0.66±0.01
Virchow2 (LinProb) 0.69±0.01 0.64±0.01 0.66±0.01
Prov-GigaPath (LinProb) 0.71±0.01 0.65±0.01 0.67±0.01
H-optimus-0 (LinProb) 0.70±0.01 0.64±0.01 0.67±0.01
ViT-S DINOv3 (LoRA) 0.64±0.07 0.59±0.06 0.55±0.13
Phikon (LoRA) 0.75±0.10 0.67±0.10 0.66±0.13
UNI (LoRA) 0.75±0.08 0.66±0.08 0.65±0.11
Virchow (LoRA) 0.81±0.08 0.72±0.09 0.72±0.11
Virchow2 (LoRA) 0.82±0.05 0.74±0.08 0.73±0.11
Prov-GigaPath (LoRA) 0.80±0.06 0.70±0.08 0.70±0.11
H-optimus-0 (LoRA) 0.82±0.07 0.73±0.08 0.73±0.10

Table 12: Results at 10% dataset size of MIDOG dataset.
Model AUROC Balanced ACC Weighted F1
ResNet50 (End-To-End) 0.84±0.02 0.75±0.02 0.75±0.03
ViT-S (End-To-End) 0.81±0.02 0.70±0.03 0.66±0.07
ViT-B (End-To-End) 0.71±0.09 0.63±0.07 0.61±0.04
ViT-H (End-To-End) 0.76±0.03 0.67±0.05 0.65±0.09
ResNet50 (LinProb) 0.67±0.00 0.61±0.00 0.64±0.00
ViT-H (LinProb) 0.71±0.00 0.62±0.01 0.65±0.01
ViT-S DINOv3 (LinProb) 0.68±0.00 0.57±0.01 0.60±0.01
Phikon (LinProb) 0.78±0.00 0.69±0.00 0.72±0.00
UNI (LinProb) 0.78±0.00 0.70±0.00 0.72±0.00
Virchow (LinProb) 0.79±0.00 0.71±0.00 0.73±0.00
Virchow2 (LinProb) 0.78±0.00 0.70±0.00 0.72±0.00
Prov-GigaPath (LinProb) 0.78±0.01 0.70±0.00 0.73±0.00
H-optimus-0 (LinProb) 0.79±0.00 0.71±0.01 0.74±0.01
ViT-S DINOv3 (LoRA) 0.74±0.12 0.67±0.09 0.67±0.11
Phikon (LoRA) 0.79±0.10 0.72±0.09 0.71±0.09
UNI (LoRA) 0.84±0.05 0.76±0.04 0.76±0.04
Virchow (LoRA) 0.81±0.11 0.73±0.10 0.74±0.11
Virchow2 (LoRA) 0.87±0.03 0.79±0.03 0.80±0.02
Prov-GigaPath (LoRA) 0.83±0.08 0.75±0.07 0.76±0.07
H-optimus-0 (LoRA) 0.88±0.02 0.80±0.03 0.81±0.02

Table 13: Results at 100% dataset size of MIDOG dataset.
Model AUROC Balanced ACC Weighted F1
ResNet50 (End-To-End) 0.87±0.01 0.79±0.01 0.78±0.01
ViT-S (End-To-End) 0.82±0.01 0.73±0.01 0.72±0.03
ViT-B (End-To-End) 0.79±0.01 0.70±0.02 0.71±0.03
ViT-H (End-To-End) 0.80±0.04 0.70±0.05 0.70±0.09
ResNet50 (LinProb) 0.69±0.00 0.61±0.00 0.65±0.00
ViT-H (LinProb) 0.71±0.00 0.61±0.00 0.65±0.00
ViT-S DINOv3 (LinProb) 0.68±0.00 0.57±0.00 0.60±0.00
Phikon (LinProb) 0.81±0.00 0.71±0.00 0.74±0.00
UNI (LinProb) 0.83±0.00 0.73±0.00 0.76±0.00
Virchow (LinProb) 0.84±0.00 0.75±0.00 0.78±0.00
Virchow2 (LinProb) 0.85±0.00 0.76±0.00 0.78±0.00
Prov-GigaPath (LinProb) 0.83±0.00 0.74±0.00 0.77±0.00
H-optimus-0 (LinProb) 0.84±0.00 0.75±0.00 0.78±0.00
ViT-S DINOv3 (LoRA) 0.78±0.12 0.70±0.09 0.71±0.09
Phikon (LoRA) 0.80±0.13 0.73±0.10 0.73±0.11
UNI (LoRA) 0.84±0.09 0.76±0.07 0.76±0.07
Virchow (LoRA) 0.87±0.07 0.78±0.06 0.79±0.05
Virchow2 (LoRA) 0.89±0.01 0.80±0.02 0.81±0.01
Prov-GigaPath (LoRA) 0.87±0.05 0.79±0.04 0.79±0.04
H-optimus-0 (LoRA) 0.90±0.02 0.81±0.02 0.81±0.02
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