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Abstract
We present a neural parametric 3D breast shape model and, based on this model, introduce a low-cost and accessible 3D
surface reconstruction pipeline capable of recovering accurate breast geometry from a monocular RGB video. In contrast
to widely used, commercially available yet expensive 3D breast scanning solutions and existing low-cost alternatives, our
method requires neither specialized hardware nor proprietary software and can be used with any device that is able to
record RGB videos. The key building blocks of our pipeline are a state-of-the-art, off-the-shelf Structure-from-Motion
pipeline, paired with a parametric breast model for robust surface reconstruction. Our model, similarly to the recently
proposed implicit Regensburg Breast Shape Model (iRBSM), leverages implicit neural representations to model breast
shapes. However, unlike the iRBSM, which employs a single global neural Signed Distance Function (SDF), our
approach—inspired by recent state-of-the-art face models—decomposes the implicit breast domain into multiple smaller
regions, each represented by a local neural SDF anchored at anatomical landmark positions. When incorporated into
our surface reconstruction pipeline, the proposed model, dubbed liRBSM (short for localized iRBSM), significantly
outperforms the iRBSM in terms of reconstruction quality, yielding more detailed surface reconstruction than its global
counterpart. Overall, we find that the introduced pipeline is able to recover high-quality and metrically correct 3D breast
geometry within an error margin of less than 2 mm. Our method is fast (requires less than six minutes), fully transparent
and open-source, and together with the model publicly available at https://rbsm.re-mic.de/local-implicit.
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1. Introduction

D espite recent advances and emerging applications,
research evolving around 3D parametric models for
the female breast remains rare. Since the seminal

work of Seo et al. (2007), who developed the first classical
mesh-based statistical breast shape model, the field has seen
relatively little progress—especially when compared to the
face domain (Egger et al., 2020)—likely due to the sensitiv-
ity of the data and the resulting lack of publicly available 3D
breast scan datasets. Nevertheless, over the years, 3D para-
metric breast models have found use in a range of medical

applications, including automatic breast volume estimation
from surface scans (Seo et al., 2007; Göpper et al., 2020),
plastic surgery simulation (Kim et al., 2008), model-based
breast segmentation in Magnetic Resonance Imaging (MRI)
volumes (Gallego and Martel, 2011), and surface reconstruc-
tion from 2D photographs (Ruiz et al., 2018) or point clouds
obtained using depth cameras (Mazier et al., 2021). Po-
tential future use cases beyond the clinical domain include
virtual try-on and custom bra design. A common limitation
shared by all of these approaches is the absence of publicly
available code and trained models, which prevents broader
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Figure 1: Contributions. We propose a 3D parametric breast model along with a model-based surface reconstruction
pipeline that is able to accurately reconstruct 3D breast surfaces from a single monocular RGB video. Our model, trained
on over 160 breast scans, builds upon a localized neural implicit representation and represents breast geometry as an
ensemble of local MLPs instead of a single global network, significantly improving the level of detail.

adoption and hinders future research. As a consequence
and as of today, none of the above-mentioned methods
is effectively accessible to clinicians or other researchers,
and only two publicly available 3D breast models exist: the
Regensburg Breast Shape Model (RBSM; Weiherer et al.
(2023)) and the recently proposed state-of-the-art implicit
RBSM (iRBSM; Weiherer et al. (2025)). While the RBSM
is a traditional mesh-based statistical shape model built by
applying Principal Component Analysis (PCA) to a set of
110 non-rigidly registered 3D breast scans, the iRBSM takes
a fundamentally different approach by leveraging implicit
neural representations to learn a realistic and expressive
parametric breast model from over 160 subjects. Instead
of using triangular meshes as surface representation, the
iRBSM represents breast shapes as the zero-level set of
a neural Signed Distance Function (SDF), modeled with
a simple coordinate-based Multi-Layer Perceptron (MLP).
Once trained, triangular meshes can be extracted from the
implicit volume using marching cubes algorithm (Lorensen
and Cline, 1987). A major advantage of implicit represen-
tations over PCA-based models is that they eliminate the
need for training data to be in correspondence, entirely
removing the reliance on computationally demanding and
error-prone non-rigid surface registration—a task that is
particularly difficult in feature-less and partially occluded
breast shapes as discussed in (Weiherer et al., 2025).

In this work, we build upon the neural implicit represen-
tation of the iRBSM and propose a novel open-access 3D
parametric breast model. Our model is inspired by recent
state-of-the-art face models (Zheng et al., 2022; Giebenhain
et al., 2023; Potamias et al., 2025) and employs a decom-
position of the implicit breast domain into multiple smaller
regions, each of which is modeled using a local neural SDF
anchored at anatomical landmark positions instead of a
single global network. Compared to the iRBSM, our model
provides a significantly higher level of detail, enabling the
recovery of fine anatomical structures such as skin folds
and nipples. Due to its local nature, we refer to our model

as liRBSM (short for localized iRBSM).
Largely independent from these developments—with the

exception of (Ruiz et al., 2018; Mazier et al., 2021)—3D
breast scanning (or imaging) has become standard practice
in plastic surgery over the past two decades, often used
to digitally assess breast volume (Kovacs et al., 2007; Lee
et al., 2016; Seoud et al., 2017; Gouveia et al., 2021) or
symmetry (Eder et al., 2012; Brébant et al., 2022; Noisser
et al., 2022; Bai et al., 2023), perform anthropometric
measurements (Hartmann et al., 2021; Leusink et al., 2021;
Wang et al., 2025b), or simulate surgical outcomes (Kim
et al., 2008; Georgii et al., 2014). To create surface scans
of the breast, most researchers and clinicians rely on com-
mercially available 3D scanning solutions, typically requiring
special hardware and proprietary software, such as Artec’s
handheld Eva1 or Canfield’s portable Vectra H22 or static
Vectra XT3 system. Although established, well validated
for numerous breast-related applications, and known to
produce highly accurate 3D breast scans, due to their high
purchase price (currently ∼10,000 Euros for Artec Eva;
around 20,000 Dollars for Vectra H2), these systems are
typically only available to large hospitals or clinical facilities.
As a result, a recent line of research started to investigate
various cost-effective alternatives based on consumer-grade
hardware, most notably the iPhone (Pinto et al., 2022;
Han et al., 2023; Rudy et al., 2024; Behrens et al., 2024;
Dijkman et al., 2024; Kyriazidis et al., 2025; Chrobot et al.,
2025), in combination with freely available software such
as the 3D Scanner App4. While these methods offer more
accessibility than Artec’s or Canfield’s systems, they are
still limited to certain devices and rely on closed-source
software, restricting transparency and full control over the

1. https://www.artec3d.com/portable-3d-scanners/
artec-eva

2. https://www.canfieldsci.com/imaging-systems/
vectra-h2-body

3. https://www.canfieldsci.com/imaging-systems/
vectra-xt-3d-imaging-system

4. https://www.3dscannerapp.com
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surface reconstruction process which ultimately raises pri-
vacy concerns and imposes laborious workflows (Chrobot
et al., 2025).

To tackle these shortcomings and based on the proposed
parametric breast model, we introduce a new low-cost, ac-
cessible, and accurate 3D breast surface reconstruction
method that only requires a monocular RGB video as in-
put. Our method produces accurate metrical 3D recon-
structions, is fast (takes less than six minutes to run on a
standard computer with a consumer-grade graphics card),
well-documented, and fully open-source. Moreover, it can
be used in combination with any capturing device that
is able to record RGB videos. From a technical perspec-
tive, our pipeline combines a recent state-of-the-art and
off-the-shelf Structure-from-Motion pipeline with robust
model-based surface reconstruction.

Our key contributions are outlined in Figure 1 and can
be summarized as follows:

• We present a new 3D parametric breast model that builds
upon a localized neural implicit representation, signifi-
cantly increasing the level of detail.

• We propose a low-cost and accessible 3D surface re-
construction pipeline that is able to accurately recover
metrical breast surfaces from just a single monocular
RGB video, captured using commodity hardware.

• To encourage further research and widespread adoption,
we publicly release our model and surface reconstruction
pipeline along with an easy-to-use graphical user inter-
face that runs on all common operating systems and
(optionally) without a graphics card. Both available at
https://rbsm.re-mic.de/local-implicit.

2. Related Work

We begin with a comprehensive overview of existing para-
metric 3D breast shape models, followed by a review of
related work on 3D breast surface reconstruction methods.
To contextualize our work within the broad landscape of
shape modeling and (model-based) surface reconstruction
from RGB images, we finally briefly summarize related liter-
ature on full-body models and reconstruction techniques.

2.1 Parametric 3D Breast Models

With the exception of (Gallego and Martel, 2011), all exist-
ing models have been trained on 3D breast scans acquired
in a standing position.

Seo et al. (2007) were the first to build a parametric
breast model from 28 scans to analyze breast volume and
surface measurements. They assumed symmetric breasts
by simply mirroring the right breast.

Study Representation Method Training Data Pose #Subjects Public?
Seo et al. (2007) Mesh-based PCA 3D breast scans Standing 28 ✗

Gallego and Martel (2011) Mesh-based PCA Segmented MRIs Prone 415 ✗

Ruiz et al. (2018) Mesh-based PCA 3D breast scans Standing 310 ✗

Mazier et al. (2021) Mesh-based PCA Blendshapes Standing 55 ✗

Weiherer et al. (2023) Mesh-based PCA 3D breast scans Standing 110 ✓

Weiherer et al. (2025) Implicit (Global) Deep 3D breast scans Standing 168 ✓

Ours Implicit (Local) Deep 3D breast scans Standing 168 ✓

Table 1: Overview of existing 3D parametric breast
models. Our model is the first to use a localized neural
implicit representation.

Gallego and Martel (2011) learned a PCA-based model
from 415 MRI-extracted 3D breast surfaces captured in
prone position. Their model is specifically tailored for auto-
matic, model-based breast segmentation in MRI volumes;
hence, it was constructed using data only from a single
breast rather than the full thoracic region.

Ruiz et al. (2018) built a 3D breast model from 310
scans and subsequently fit their model onto 3D breast scans
or a set of three unconstrained 2D photographs taken from
frontal and lateral views (± 90 degrees).

Mazier et al. (2021) proposed a rigged 3D breast model
built from 55 artist-created blendshapes to transfer surgical
reference patterns drawn on the model’s mean shape onto
any patient in any position by non-rigidly registering the
model to a patient’s 3D breast scan. Due to the synthetic
nature of the data, their model is likely to generate rather
unnatural-looking breast shapes, and the overall accuracy
measured in terms of mean absolute error and landmark
error of the surface registrations is moderate.

Weiherer et al. (2023) published the first publicly avail-
able PCA-based model of the female breast, trained on 110
high-quality 3D breast scans. While representing a notable
advancement towards making 3D parametric breast models
accessible, their model exhibits correspondence errors as a
result of occluded underbusts in large or sagged breasts—
a common problem in classical PCA-based breast models
built from surface-only 3D breast scans (Seo et al., 2007).

To account for this, Weiherer et al. (2025) recently
introduced the iRBSM, the first implicit 3D breast shape
model. Based on correspondence-free neural implicit rep-
resentations (representing breast shapes as the zero-level
set of implicit surfaces parametrized with an MLP) and
trained on 168 breast scans, their model is able to generate
diverse yet plausible breast shapes. However, when fitted
onto point clouds, the global nature of the iRBSM misses
fine details such as skin folds and nipples.

Only the RBSM (Weiherer et al., 2023) and iRBSM
(Weiherer et al., 2025) are publicly available. A compact
summary of all models is given in Table 1.
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Study Input Data Capturing Device Software (SW) Compatible With Handheld? Public SW? Open-source SW?
Costa et al. (2014) RGB-D Microsoft Kinect Kinect SDK Any RGB-D camera∗ ✗ ✓ ✗

Henseler et al. (2014) RGB-D Microsoft Kinect Kinect SDK + Custom Any RGB-D camera∗ ✗ ✗ ✗

Pöhlmann et al. (2014) RGB-D Microsoft Kinect Kinect SDK Any RGB-D camera∗ ✗ ✓ ✗

Wheat et al. (2014) RGB-D 2 Microsoft Kinects Kinect SDK + Custom Any RGB-D camera∗ ✗ ✗ ✗

Lacher et al. (2015) RGB-D Microsoft Kinect Kinect SDK + Custom Any RGB-D camera∗ ✗ ✗ ✗

Henseler et al. (2016) RGB-D Microsoft Kinect Kinect SDK + Custom Any RGB-D camera∗ ✗ ✗ ✗

Pöhlmann et al. (2017) RGB-D Microsoft Kinect Kinect SDK Any RGB-D camera∗ ✓† ✓ ✗

Koban et al. (2018) RGB-D 3D scanner (Sense) Supplied Nothing ✓ ✓ ✗

Lacher et al. (2019) RGB-D Microsoft Kinect Kinect SDK + Custom Any RGB-D camera∗ ✗ ✗ ✗

Oranges et al. (2019) RGB-D 3D scanner (Structure Sensor 3D) Supplied Nothing ✓ ✓ ✗

Tong et al. (2020) RGB-D 2 mod. 3D scanners (HP Pro S3) Supplied Nothing ✗ ✗ ✗

Luu et al. (2021) RGB-D 3D scanner (Custom) Custom Nothing ✗ ✗ ✗

Pinto et al. (2022) RGB-D iPhone 11 (TrueDepth) Scandy Pro iPhone & iPad w\ TrueDepth ✗ ✓ ✗

Han et al. (2023) RGB-D iPhone 12 Pro (LiDAR) Custom iPhone & iPad w\ LiDAR‡ ✓ ✗ ✗

Behrens et al. (2024) RGB-D iPhone 11 Pro Max (TrueDepth) 3D Scanner App iPhone & iPad w\ TrueDepth ✗ ✓ ✗

Dijkman et al. (2024) RGB-D iPhone XR (TrueDepth) Heges iPhone & iPad w\ TrueDepth ✓ ✓ ✗

Fu et al. (2024) RGB-D Intel RealSense 3D Slicer + Custom Any RGB-D camera∗ ✓ ✗ ✗

Rudy et al. (2024) RGB-D iPhone X (TrueDepth) Scandy Pro iPhone & iPad w\ TrueDepth ✓ ✓ ✗

Kyriazidis et al. (2025) RGB-D iPhone 15 Pro (LiDAR) 3D Scanner App iPhone & iPad w\ LiDAR ✓ ✓ ✗

de Heras Ciechomski et al. (2012) Photo Not specified Custom Any RGB camera ✓ ✗ ✗

Henseler et al. (2013) Photo 8 DSLR cameras Dimensional Imaging 3D Nothing ✗ ✗ ✗

Ruiz et al. (2018) Photo Not specified Custom Any RGB camera ✓ ✗ ✗

Chrobot et al. (2025) Photo iPhone 15 3D Scanner App Newer iPhone & iPad ✓ ✓ ✗

Ours Video iPhone 12 Mini Custom Any RGB camera ✓ ✓ ✓

Table 2: Overview of existing low-cost 3D breast surface reconstruction methods. The list comprises all works
that propose or use affordable alternatives to commercial 3D scanning systems from companies such as Artec and
Canfield, all of which rely on commodity and non-medical hardware. Among these, our proposed method stands out as
the only pipeline that is (i) compatible with the widest range of devices—that is, any device capable of recording a
standard RGB video, (ii) handheld and publicly available without requiring the purchase of specialized hardware, and (iii)
based entirely on open-source software. We highlight in green the most accessible pipelines, which we define as pipelines
that are handheld (hence do not require extra equipment such as tripods) and rely only on publicly available software.
∗Compatibility might require significant adaptation or exchange of the Kinect SDK; †Multiple setups are proposed, and
only some of them are handheld; ‡Compatibility unclear due to self-developed software (software was developed under
iOS, hence compatibility is assumed for iPhone and iPad).

2.2 Breast Surface Reconstruction

Next, we revisit 3D breast surface reconstruction pipelines,
limiting our scope to low-cost approaches that utilize com-
modity hardware (i.e., methods proposing alternatives to
commercial systems from Artec or Canfield). A comprehen-
sive overview of these works is provided in Table 2.

RGB-D. The vast majority of the existing pipelines (19
out of 23) use RGB and depth data (referred to as RGB-D),
acquired using RGB-D cameras such as Microsoft Kinect
(Costa et al., 2014; Henseler et al., 2014; Pöhlmann et al.,
2014; Wheat et al., 2014; Lacher et al., 2015; Henseler
et al., 2016; Lacher et al., 2019) or Intel RealSense (Fu
et al., 2024). In this context, Lacher et al. (2017) pre-
sented a systematic comparison between Microsoft Kinect
v1 and v2 and established 3D scanning solutions (Artec Eva
and 3dMD5 stereophotogrammetry system) based solely on
open-source software. They found that both devices pro-
duce satisfactory 3D breast surface reconstructions within
an error margin of 3 mm compared to the ground truth.

Lacher et al. (2019) introduced a non-rigid, template-
free method for surface reconstruction from an RGB-D
stream captured with a Microsoft Kinect. While being able

5. https://www.3dmd.com

to recover clinical-quality 3D breast scans without motion
or breathing artifacts, long runtimes of 1–2 hours prohibit
their method from widespread use in daily clinical practice.

Recently, Fu et al. (2024) proposed a portable setup
involving the Intel RealSense D415 camera. Although their
method reportedly produces 3D breast scans with an average
landmark error of less than 1.5 mm, they employ custom
software not publicly available.

Besides RGB-D cameras, researchers explored 3D breast
surface reconstruction pipelines based on affordable (non-
medical) structured light scanners, either commercially avail-
able and handheld (Koban et al., 2018; Oranges et al., 2019)
or custom-built and static (Tong et al., 2020; Luu et al.,
2021). All of these methods rely on proprietary software
and require purchasing special hardware.

A third recent line of work investigated the use of the
iPhone’s LiDAR sensor (Han et al., 2023; Kyriazidis et al.,
2025) and TrueDepth camera (Pinto et al., 2022; Rudy
et al., 2024; Behrens et al., 2024; Dijkman et al., 2024)
for 3D breast surface reconstruction. Both studies that
utilize the iPhone’s LiDAR sensor report very similar find-
ings, evaluating surface reconstruction quality based on
anthropometric distances measured between anatomical
landmarks. Most measurements show reasonable agree-
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ment with ground truth values obtained via measuring tape,
with the notable exception of the nipple-to-inframammary
fold distance. This discrepancy is due to the low spatial
resolution of the iPhone’s LiDAR sensor, which captures
only coarse surface geometry and completely fails to repre-
sent high-frequency details—an issue clearly visible in the
poor reconstructions shown in Kyriazidis et al. (2025). On
the other hand, the iPhone’s TrueDepth camera appears
capable of reconstructing high-fidelity surfaces. Rudy et al.
(2024) report an average surface-to-surface distance of ap-
proximately 1.5 mm between 3D breast reconstructions
obtained with the TrueDepth camera and ground truth Vec-
tra H2 scans. These results confirm earlier findings by Pinto
et al. (2022); however, Dijkman et al. (2024) and Behrens
et al. (2024) report only sufficient reconstruction quality
when assessed in the context of breast volume estimation.

In summary, among all low-cost depth-based pipelines,
only the Microsoft Kinect, when paired with custom soft-
ware (Lacher et al., 2019), and the iPhone’s TrueDepth
camera demonstrate the ability to reconstruct high-fidelity
3D breast surfaces, positioning them as a real alternative
to commercial 3D scanning solutions. Nevertheless, both
approaches require special hardware and depend on either
non-publicly available or proprietary software.

Photo. Only a few methods have been proposed for re-
constructing 3D breast surfaces from multi-view images.
de Heras Ciechomski et al. (2012) presented a web-based
application for 3D breast surface reconstruction using three
2D photographs taken from frontal and lateral views, along
with user-provided anthropometric measurements. They
reported a mean surface-to-surface reconstruction error
ranging between 2 and 4 mm. The method requires the
user to select landmarks on all three images (22 in total)
and is not publicly available.

Henseler et al. (2013) designed a static setup using
eight DSLR cameras and employed photogrammetry to
reconstruct the 3D surface of the breast. Their setup
is fairly large, complex, and impractical for everyday use,
requiring significant effort and space to assemble.

Based on a custom-built 3D parametric breast model,
Ruiz et al. (2018) proposed a 3D surface reconstruction
technique that operates on three 2D photographs captured
from frontal and lateral perspectives (± 90 degrees). The
method fits the parametric model to a sparse 3D point
cloud reconstructed via triangulation of an automatically
detected set of corresponding 2D landmarks across the
three images. Prior to model fitting, estimated camera
parameters required for triangulation and the back-projected
3D landmarks are jointly refined using bundle adjustment.
From a technical perspective, their pipeline is very similar
to our method, except for the fact that we obtain the sparse
point cloud by applying Structure-from-Motion (SfM) to a

SMPL Ours GT scan

Figure 2: Body model vs. breast-specific model. We
fit the female version of the popular SMPL model (Loper
et al., 2015) to one of our 3D breast scans, demonstrating
that existing full-body models, despite including the chest
region, can not accurately represent nude breast shapes.

set of multi-view images extracted from a video sequence
instead of three images (note that they essentially also
use SfM, but with a custom keypoint detector). On the
downside, they only evaluate their method based on the
re-projection error of the 3D landmarks, leaving the actual
quality of the reconstructed geometry unclear. Furthermore,
unlike ours, their pipeline is not publicly available.

Recently, Chrobot et al. (2025) employed an iPhone 15
and the 3D Scanner App’s photogrammetry mode to recon-
struct 3D breast surfaces from a series of 2D photographs,
automatically taken every 0.8 seconds as controlled by
the application. They report only moderate accuracy, as-
sessed using 14 anthropometric distances measured on the
smartphone-based 3D reconstructions and ground truth
Vectra H2 scans.

In contrast to the aforementioned methods, our pipeline
uses a simple monocular RGB video as input. We chose to
work with video sequences because they are easier and faster
to acquire than individual photographs, thereby minimizing
capture time and reducing motion and breathing artifacts.
Similar to Ruiz et al. (2018), we adopt a model-based 3D
surface reconstruction approach, which is particularly robust
in noisy settings, as expected due to the degraded image
quality of video frames. However, unlike their method,
we employ a neural implicit 3D breast model, enabling
more detailed and accurate surface reconstructions. Our
approach is publicly available, relies solely on open-source
software, and does not require specialized hardware—any
standard RGB camera can be used.

2.3 Human Body Models and Reconstruction
We finally review related literature on human body mod-
els (that naturally include the breast region) and recent
methods for neural implicit surface reconstruction from a
sequence of multi-view RGB images.

Models. Probably the most well-known full-body model is
SMPL (Loper et al., 2015), a PCA-based parametric human
pose and shape model that uses Linear Blend Skinning to
allow for pose-dependent shape deformations and whose
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Figure 3: Overview of our model’s architecture. Instead of using a single global MLP to represent breast shapes,
following Giebenhain et al. (2023), we partition the implicit domain into six smaller regions, centered around anchor
points {a1, a2, . . . , a6} placed at anatomical landmark positions. Each region is represented by a shallow MLP ϕi,
conditioned on a local latent code zi. To account for areas distant from any anchor, we introduce an additional MLP
ϕ0 that shares the same representation as the local MLPs. The final SDF ϕ(x, z) at a query point x is obtained by
blending the outputs of all MLPs using a Gaussian weighting scheme. An illustration of the spatial influence of each
local MLP is shown on the left, visualized on the resulting model’s mean shape.

shape space is learned from the CAESAR (Robinette et al.,
2002) dataset. While the female version of SMPL does
include the chest region, as demonstrated in Figure 2, it is
not able to accurately reconstruct nude breast shapes as
it has been trained on 3D scans of women wearing a light
bra. Numerous follow-ups improved upon SMPL, sticking
to its mesh-based representation. Notably, GHUM (Xu
et al., 2020) replaces the PCA-based, linear shape space
with a non-linear shape space learned using a Variational
Auto Encoder. Introduced by Osman et al. (2020), STAR
constrains SMPL’s deformations to be more realistic, SUPR
(Osman et al., 2022) uses a factorized representation based
on part models, and SKEL (Keller et al., 2023) re-rigs
SMPL with a biomechanics skeleton.

With the rise of neural implicit representations, Neural
Parametric Models (NPMs; Palafox et al. (2021)) propose
a full-body model with disentangled human shape and pose,
representing shape in canonical pose as the zero-level set of
a latent-conditioned neural SDF, which is deformed through
a learned deformation field to yield shapes in posed space.
NPMs differ from other neural implicit approaches (Deng
et al., 2020; Mihajlovic et al., 2021; Alldieck et al., 2021;
Mihajlovic et al., 2022; Palafox et al., 2022; Mihajlovic et al.,
2025) in that they do not require any domain-specific an-
notations (such as a kinematic chain, skeleton, or part seg-
mentations) or knowledge, therefore can be easily adapted
to other parts of the human body. Existing neural implicit
body models are typically trained on human motion datasets
captured from clothed subjects; hence, these models can
not accurately represent breast shapes.

Neural Parametric Head Models (NPHMs; Giebenhain
et al. (2023)) built upon NPMs and proposed a part-based

head model, decomposing the implicit head domain into
multiple smaller regions each of which is represented by a
local neural SDF instead of a single global network. Facial
expressions are modeled as deformations of shape in canon-
ical space, analogously to pose in NPMs. Conceptually
similar to (Zheng et al., 2022), this strategy significantly
increases the level of detail, reaching state-of-the-art results
in dynamic head reconstruction from monocular RGB videos
(Giebenhain et al., 2024).

In this work, we adopt NPHMs’ architecture and use
it to model breast shapes. We note that, in this context,
the previously introduced iRBSM (Weiherer et al., 2025)
follows the architecture of NPMs without pose deformations,
whereas our proposed model, liRBSM, resembles NPHMs’
architecture but omits the facial expression network.

Reconstruction. Most of the state-of-the-art neural sur-
face reconstruction methods employ a prior-free approach,
combining implicit surface representations (such as occu-
pancy functions or SDFs) with differentiable volume render-
ing (Niemeyer et al., 2020; Yariv et al., 2021; Wang et al.,
2021; Oechsle et al., 2021; Yu et al., 2022; Li et al., 2023;
Wang et al., 2023; Cao and Taketomi, 2024). Per-scene
optimization methods typically suffer from long run-times
and, due to missing geometric priors, degenerate quickly if
only a sparse set of images is available.

In contrast, prior-based approaches work well in a few-
shot scenario. More recent methods combine differentiable
volume rendering with neural parametric models (Ramon
et al., 2021; Giebenhain et al., 2024) and optional dis-
placement fields for improved geometrical detail (Grassal
et al., 2022; Caselles et al., 2025) and are primarily being
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developed in the head domain. Fitting a model to a set of
images is then done in an analysis-by-synthesis fashion, and
requires a careful initialization, (facial) landmarks and/or
silhouette masks detected in every image, and photometric
losses to supervise the optimization process.

Contrary to rendering-based 3D reconstruction methods
and inspired by the recent success of differentiable SfM
pipelines (Wang et al., 2024b,a; Duisterhof et al., 2025;
Wang et al., 2025a) in terms of robustness against photo-
metric changes and few-shot capabilities, we opted for a
more classical approach and fit our 3D neural parametric
breast model directly onto a point cloud obtained from SfM.
This model-based surface reconstruction strategy is robust
against noise but retains the few-shot capabilities of prior-
based approaches while avoiding cumbersome per-image
landmark detection, which is difficult in the breast domain
due to the lack of automatic landmark detectors. Moreover,
it bypasses the necessity of large paired 2D-3D datasets
common in human mesh recovery (Tian et al., 2023), as
no such data is available in the breast domain. As we will
show later, our method achieves state-of-the-art results and
works well with as few as three images extracted from the
input video.

3. Methods

We will now describe our model and the proposed 3D surface
reconstruction pipeline in detail.

3.1 Localized Neural Implicit Breast Model
Our model adopts the neural implicit representation of the
iRBSM, which represents breast shapes as the zero-level
set of a latent-conditioned neural SDF. However, inspired
by recent state-of-the-art face models (Zheng et al., 2022;
Giebenhain et al., 2023; Potamias et al., 2025) and to
increase the level of detail, we further employ a space
partitioning approach and decompose the implicit breast
domain into multiple smaller regions, each represented by
a local SDF anchored at anatomical landmark positions.
Specifically, as illustrated in Figure 3, instead of a single
global MLP that models the entire breast geometry, we use
an ensemble of K local MLPs

ϕk : R3 × RLglob × RLloc → R
(x, zglob, zk) 7→ ϕk(x − ak, zglob, zk)

(1)

centered around anchor points ak ∈ R3 and blended to
yield a parametric model of the form

ϕ(x, z) =
K∑

k=1
wk(x)ϕk(x − ak, zglob, zk), (2)

where zglob ∈ RLglob is a global (per-shape) latent code,
zk ∈ RLloc are local latent codes for the individual MLPs,

and z := [zglob, z1, z2, . . . , zK ]. The blending weights wk(x)
in Eq. (2) are defined as

wk(x) = w∗
k(x)∑K

k′=1 w∗
k′(x)

, (3)

where
w∗

k(x) = exp
(

−∥x − ak∥2
2

2h2

)
(4)

is an isotropic Gaussian kernel with bandwidth h > 0.
Anchor points a = [a1, a2, . . . , aK ] are predicted using a
small MLP ϕanc : RLglob → RK×3 conditioned on the global
latent code, i.e., a = ϕanc(zglob).

Finally, since each of the local MLPs focuses on a
specific part of the breast, following Giebenhain et al. (2023),
we add an additional MLP to our formulation in Eq. (2)
that captures global context far away from the anchor points
(effectively resulting in K + 1 regions in which we divide
the domain). This MLP shares the same representation as
the local MLPs introduced in Eq. (1), is anchored at the
origin, and uses a constant weight response. We refer to
this network as background MLP.

3.1.1 Training

We train our model in an auto-decoder fashion (Park
et al., 2019), jointly optimizing the network’s parameters
and latent codes. Given a dataset of 3D breast scans,
each of which is represented as normalized and centered
point cloud X = {x1, x2, . . . , xn} ⊂ [−1, 1]3 with nor-
mals N = {n1, n2, . . . , nn} ⊂ R3 and ground truth anchor
points agt ∈ RK×3 placed at expert-annotated anatomical
landmark positions, we minimize the same loss function as
in (Giebenhain et al., 2023), namely,

L = LSDF + λ5Lanc + λ6∥z∥2, (5)

where

LSDF =
n∑

i=1
λ1|ϕ(xi, z)| + λ2∥∇xiϕ(xi, z) − ni∥2+

Ex∼D [λ3|∥∇xϕ(x, z)∥2 − 1| + λ4 exp(−α|ϕ(x, z)|)] (6)

ensures that ϕ represents a valid SDF,

Lanc = ∥ϕanc(zglob) − agt∥2 (7)

is used to supervise anchor predictions, and the last term
regularizes latent codes. The first term in Eq. (6) enforces
that the predicted SDF is zero at the given surface points
and that its gradients on the zero-level set match the ground
truth surface normals. The second term serves as a regu-
larizer, consisting of an Eikonal constraint that encourages
the SDF’s gradient to have unit norm almost everywhere,
and a volume loss (with parameter α ≫ 1) that penalizes

101



Weiherer et al., 2026

Output: Metrical 3D reconstructionInput: Monocular RGB video

Surface reconstruction from monocular RGB videos

3) Model fitting and scaling1) Structure-from-Motion 2) Alignment and pruning

a) Project 2D landmarks into 3D b) Align to mean and prune

Click 6 landmarks
in a single image

Figure 4: Surface reconstruction from monocular RGB videos. We present a method for low-cost and accurate
metrical breast surface reconstruction from just a single monocular RGB video, acquired using commodity hardware
(such as smartphones). Our pipeline starts by applying Structure-from-Motion to a set of frames extracted from the
input video, resulting in a sparse point cloud and camera parameters. We then align the estimated point cloud to our
model’s mean shape, prune away background points, fit our model to the resulting point cloud, and finally recover
real-world scale. Depending on the available hardware, the entire reconstruction can be executed in under six minutes.

off-surface points for creating SDF values close to zero.
Off-surface points D ⊂ R3 are obtained by randomly offset-
ting the surface points and adding some points uniformly
sampled in D := [−1, 1]3 ∪ {x1 + ϵ1, x2 + ϵ2, . . . , xn + ϵn}
with ϵi ∼ N (0, σ2). We refer the reader to (Gropp et al.,
2020) and (Sitzmann et al., 2020) for further details about
this loss.

3.1.2 Inference

Given a 3D breast scan as unoriented point cloud (with-
out normals) X ′ = {x′

1, x′
2, . . . , x′

n′} uniformly scaled to
[−1, 1]3 and centered at the origin, at test-time, we obtain
the corresponding latent code z∗ via maximum a posteriori
estimation as proposed in (Park et al., 2019). In particular,
we fix the model’s parameters and optimize

z∗ = arg min
z∈RL


n′∑

i=1
|ϕ(x′

i, z)| + λ∥z∥2

 , (8)

where L = Lglob + (K + 1)Lloc denotes the total latent
dimensionality of the model, and λ ≥ 0 can be used to filter
out noise. We then apply the inverse scale and translation
to the extracted mesh in order to recover its original position
and scale.

3.2 Surface Reconstruction From Monocular RGB Videos
Given a sequence of RGB images I = {I1, I2, . . . , Im}
extracted from the input video, along with a set of 2D
landmarks clicked in a single frame, our goal is to 3D
reconstruct a metrically correct surface mesh, i.e., infer
the model’s parameters z that best explains the underly-
ing surface. We approach this problem by first applying
Structure-from-Motion (SfM) to I, and then robustly fitting
our model to the resulting (potentially noisy and) arbitrarily
scaled sparse point cloud by solving Eq. (8).

In particular, our pipeline, as shown in Figure 4, is as
follows. We begin by extracting a set I of m RGB im-
ages from the input video. To ensure that the selected

frames are both sharp and evenly distributed across the
video’s timeline, we adopt a window-based selection strat-
egy. Specifically, we first select m temporally equidistant
candidate frames (regardless of image quality) and then
search within a local neighborhood around each candidate
for a frame that ranks within the top 25% of the overall
sharpest frames. If no such frame is found, we adaptively
relax the sharpness threshold over three iterations before
falling back to simply selecting the sharpest frame within
the window. This approach ensures good temporal coverage
while maintaining consistent image sharpness within and
across local windows.

Next, we use a state-of-the-art and off-the-shelf SfM
pipeline, VGGSfM (Wang et al., 2024a), to reconstruct
camera parameters and a sparse point cloud S ⊂ R3 from
the given images, I.

After that, we align the point cloud to the model’s
mean shape using a set of K 2D landmarks annotated in
just a single image. Let this set of landmarks be denoted as
{(u1, v1), (u2, v2), . . . , (uK , vK)} ⊂ N2, and let us further
assume that these landmarks have been annotated in the
i-th image of I. We obtain corresponding 3D landmark po-
sitions lj by back-projecting (uj , vj) based on the estimated
camera parameters. To do so, we cast rays rj(t) = o + tdj

from the camera’s origin o ∈ R3 through pixel (uj , vj) into
the scene, selecting the point in S as back-projected land-
mark that first hits the point cloud. More formally, we
choose the point in S that is closest to the camera and
near the ray, setting

lj = arg min
x∈S

{
tj
x = (x − o) · dj : d(x, rj) ≤ δ

}
(9)

for all j ∈ {1, 2, . . . , K}, where tj
x denotes the distance

from x to the camera along the ray rj (i.e., the depth),

d(x, rj) = ∥(x − o) × dj∥2 (10)

102



Learning Neural Parametric 3D Breast Shape Models

is the distance from point x to ray rj , and δ > 0. Moreover,

o = −R⊤
i ti, dj = d̂j

∥d̂j∥2
, d̂j = R⊤

i K−1
i

uj

vj

1

 . (11)

Here, Ki ∈ R3×3 denotes the estimated camera intrinsics
of the i-th image, and [Ri | ti] ∈ R3×4 are the extrinsic
parameters, formed by rotation Ri ∈ SO(3) and translation
ti ∈ R3. Finally, we globally align the estimated point cloud
S to the model’s mean shape by computing a similarity
transformation between the back-projected 3D landmarks
{l1, l2, . . . , lK} and the corresponding model’s average an-
chor points using the method in (Umeyama, 1991). Once
aligned, we prune away points in S that are further away
from the mean shape than a pre-selected threshold, τ > 0:

S′ = {x ∈ S : ∥x − cM (x)∥2 ≤ τ}, (12)

where cM (x) = arg minx′∈M {∥x−x′∥2} is the closest point
to x in the mean shape, M ⊂ R3. This effectively removes
unwanted points in the background.

As a last step, we fit our model to the aligned and
pruned point cloud S′ as detailed in Section 3.1.2 (without
the additional scaling and translation step), resulting in a 3D
surface mesh that lives in [−1, 1]3. For a lot of applications,
including anthropometry and breast volume estimation,
however, a metrical (i.e., real-world scale) reconstruction is
required. To recover the correct scale, we propose to use
either of the following two strategies:

1. Scale the reconstructed mesh based on a known landmark
distance (we use the nipple-to-nipple distance) measured
on the real subject. This yields an exact metrical recon-
struction, but requires additional data collection.

2. Scale the reconstructed mesh with the inverse average
scaling factor obtained from our real-world scale training
data when normalized to [−1, 1]3. This approach does
not yield exact metrical reconstructions on a per-instance
level—it merely results in a statistically approximate met-
rical reconstruction; at the same time, however, it avoids
any additional data collection.

As we will show in our experimental evaluation, both
strategies result in nearly the same reconstruction accuracy,
indicating that approximate metrical reconstructions are of
sufficient quality in practice.

3.3 Implementation Details
Model. We use K = 6 anchor points, distributed as
shown in Figure 3. Furthermore, our model employs a
global latent dimension of Lglob = 128, and a local latent
dimension of Lloc = 64 (as such, our model has a total
latent dimension of L = 128 + (6 + 1)64 = 576). The

bandwidth h of the Gaussian kernel in Eq. (4) is set to
0.25, and a constant weight response of 0.2 is used for the
background MLP. The remaining model and training param-
eters closely resemble those from (Giebenhain et al., 2023).
In particular, local MLPs ϕk are fully connected and have
four 200-dimensional hidden layers with a skip connection
to the middle layer. We use the geometric initialization
scheme proposed in (Gropp et al., 2020). The final SDF
value is regressed by applying the softplus activation func-
tion. The MLP that predicts anchor positions has a single,
256-dimensional hidden layer with ReLU activation. Latent
codes are initialized from a zero-mean normal distribution
with variance 10−4. We trained until convergence, but not
longer than 15,000 epochs, using a batch size of 16 and the
AdamW optimizer (Loshchilov and Hutter, 2019) with a
weight decay of 0.01 and a learning rate of 5 × 10−4 for the
model parameters and 10−3 for latent codes. Both learning
rates are decayed by a factor of 0.5 every 3,000 epochs.
We use 500 on-surface points and 500 off-surface points
sampled from D (obtained using σ2 = 0.01) for each shape.
We empirically set λ1 = 2, λ2 = 0.3, λ3 = 0.1, λ4 = 0.01,
λ5 = 7.5, λ6 = 0.01, and α = 10. Gradients are clipped
with a cut-off value of 0.1. Training our model took about
18 hours on a single NVIDIA A40 with 40 GB of VRAM.

At inference, we optimize Eq. (8) for 1,000 iterations
using Adam (Kingma and Ba, 2015) with a learning rate
of 10−2. Additionally, we decay the learning rate by a
factor of 0.5 every 200 iterations and divide λ by 3 after
200 iterations and by 10 after 600 iterations. Inference
takes about 15 seconds, measured on a single NVIDIA RTX
A4000 with 20 GB of VRAM and a resolution of 2563.

Surface Reconstruction. We assume shared camera in-
trinsics across all images during SfM, which is safe to accept
since our images are extracted from a video sequence. More-
over, we slightly adapted VGGSfM’s default parameters (see
discussion below). We selected six landmarks in a single
image, corresponding to the model’s anchor points placed
at the anatomical locations and described below. Further-
more, δ is set such that the constraint in Eq. (9) considers
the five closest points to a ray. Lastly, τ = 0.2 in Eq. (12),
effectively discarding points that are further away from the
mean shape than ∼10 cm.

4. Experiments and Results

We performed extensive experiments to validate our new
model and the proposed 3D surface reconstruction pipeline.

Data. Our model is trained on the pre-processed dataset
of the iRBSM (Weiherer et al., 2025), which includes 168
consistently oriented 3D breast scans. All scans have been
taken in a standing position using Canfield’s Vectra H2
system. Subsequently, after data acquisition, the following
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six anatomical landmarks have been expert-annotated in
each 3D breast scan: (1) sternal notch, (2) belly button,
(3) left nipple, (4) right nipple, (5) left coracoid process,
and (6) right coracoid process, see also Figure 3.

To evaluate our model and the proposed surface re-
construction pipeline, we collected a test dataset of ten
3D breast scans acquired in a standing position using the
Vectra H2 system, along with corresponding monocular
RGB video sequences. The videos were captured using an
iPhone 12 Mini while moving in a 180-degree circular arc
around the subject at an approximately constant speed. No
specific constraints were imposed during the data acqui-
sition process, except that the region between the belly
button and the sternal notch (both included) remained
visible throughout the capture. On average, recording the
videos took about 20 seconds per subject.

Baselines. We compare our model against the publicly
available RBSM (Weiherer et al., 2023) and the recently
proposed iRBSM (Weiherer et al., 2025). The mesh-based
RBSM is fitted to point clouds X ′ using model-based non-
rigid surface registration, optimizing

L(α) = ∥x(α) − cx(α)(X ′)∥2 + λ1∥xJ(α) − l∥2 + λ2∥α∥2
(13)

for 2,000 iterations using Adam (Kingma and Ba, 2015),
a learning rate of 10−2, λ1 = 0.1, and λ2 = 0.01. The
learning rate is decayed by a factor of 0.5 every 500 itera-
tions. In Eq. (13), x(α) = x̄ + Uα denotes the classical
PCA-based statistical shape model, where x̄ ∈ R3n is the
mean shape and U ∈ R3n×q holds the model’s q principal
components. Furthermore, J ⊂ N is an index set, selecting
the m landmarks in the model that correspond to l ∈ R3m

on the target, X ′. Due to the absence of the belly button
and coracoid process in the RBSM, we use the following five
landmarks to guide the registration process: sternal notch,
left nipple, right nipple, left lower breast pole, and right
lower breast pole; see, e.g., (Hartmann et al., 2020) for a
detailed explanation of these landmarks. We employ the
augmented version of the RBSM that also includes mirrored
scans, and use all q = 219 available principal components.

The iRBSM is fitted by solving Eq. (8) under the same
setup used for our model, as detailed in Section 3.3.

Metrics. We report Chamfer distance (CD), F-Score with
a threshold of 2.5 mm, and normal consistency (NC) to com-
pare our surface reconstructions against ground truth 3D
breast scans (we refer to Appendix A for an exact definition
of these metrics). To ensure fair comparison, we compute
metrics only within the breast region, defined by cropping
meshes using axis-aligned planes passing through the upper
breast poles, along axillary lines, and approximately 5 cm
below the lower breast poles.

CD ↓ F-Score ↑ NC ↑

RBSM 3.40 ± 1.20 52.0 ± 19.67 96.8 ± 1.73

iRBSM 1.13 ± 0.38 93.5 ± 5.55 99.0 ± 0.96

Ours 0.77 ± 0.19 98.6 ± 2.43 99.6 ± 0.47

Table 3: Intrinsic model evaluation. We show quanti-
tative results for surface reconstruction from clean point
clouds consisting of 5,000 points. Our model outperforms
the RBSM and iRBSM by a large margin.

CD ↓ F-Score ↑ NC ↑

iRBSM (− | −; 256) 1.13 ± 0.38 93.5 ± 5.55 99.0 ± 0.96

K = 4 (96 | 32; 256) 0.93 ± 0.24 96.6 ± 3.69 99.4 ± 0.59

K = 6 (32 | 32; 256) 0.95 ± 0.28 96.3 ± 4.31 99.3 ± 0.73

K = 6 (64 | 32; 288) 0.89 ± 0.24 97.5 ± 3.67 99.4 ± 0.70

K = 6 (96 | 32; 320) 0.87 ± 0.21 97.7 ± 2.88 99.5 ± 0.54

Ours
K = 6 (128 | 64; 576) 0.77 ± 0.19 98.6 ± 2.43 99.6 ± 0.47

Table 4: Ablation on anchor layout and latent dimen-
sions. Numbers in parentheses represent global, local, and
total latent dimension, i.e., (Lglob | Lloc; L). Proposed
localized models consistently outperform the global iRBSM.

4.1 Intrinsic Model Evaluation
We begin by evaluating our model’s ability to reconstruct
clean point clouds, which are obtained through random
sampling of 5,000 surface points from each of our test
scans. This experiment is designed to measure the true
representational capacity of our model in comparison to
the RBSM and iRBSM, as surface reconstruction quality
is assessed independently of any compromised (noisy) or
incomplete data; hence, we refer to it as intrinsic model
evaluation. We set λ = 0.05.

Results are summarized in Table 3. Our model con-
sistently outperforms both baselines across all evaluation
metrics. Compared to the mesh-based RBSM, it achieves
over a four times reduction in CD, indicating a significantly
more accurate reconstruction of the underlying surface ge-
ometry. Furthermore, our localized model surpasses the
global iRBSM by reducing CD by more than 30%, demon-
strating the effectiveness of incorporating spatial locality.
We also investigated the impact of the number of input
points during surface fitting and found that both the iRBSM
and our model benefit from increased point density. Please
see Appendix B for quantitative and qualitative results.

Finally, we study our model’s shape space by inspecting
random samples and linear interpolants in latent space. As
seen from Figures 5 and 6, our model is highly expressive
and its shape space is continuous and well-behaved, being
able to generate a variety of plausible and realistic-looking
breast shapes.
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Figure 5: Latent space interpolation. We linearly interpolate between the latent codes corresponding to the shapes
outlined in blue. Starting from the mean shape at the center, we interpolate in positive direction along the first and
second principal components on the right, and in the negative direction on the left. Principal components are derived by
applying PCA to the optimized latent codes from the training data. Our latent space is continuous and well-behaved.

Figure 6: Random samples from our model. The pro-
posed model is highly expressive and allows for a variety of
plausible breast shapes.

4.2 Ablations

Next, we ablate key design choices, the number of anchor
points, and the model’s global and local latent dimensions.

Quantitative results can be found in Table 4, and we
refer to Appendix C for qualitative comparisons. Interest-
ingly, when the total latent dimensionality of our models is
matched to that of the iRBSM (L = 256), the model with
four anchors slightly outperforms the six-anchor setup (0.93
vs. 0.95 in CD). However, when both the global and local
latent dimensionalities are matched across configurations
(Lloc = 96, Lglob = 32) and the total latent dimension is
disregarded, the six-anchor model significantly outperforms
the four-anchor variant (0.87 vs. 0.93). In general, as the
global latent dimensionality in the six-anchor configuration
increases, the model begins to surpass the four-anchor vari-
ant, with reconstruction quality improving steadily with
larger Lglob. Finally, all of our models consistently outper-
form the global iRBSM, regardless of anchor configuration
or latent dimensionality.

4.3 Surface Reconstruction From Monocular RGB Videos

Finally, we evaluate our proposed 3D surface reconstruction
pipeline. Since the reconstructed surfaces and ground truth
3D breast scans are not precisely aligned in this setting—
unlike in the clean point cloud fitting scenario described
in Section 4.1, where points are sampled directly from the
ground truth surface—we follow common practice (Sanyal

CD ↓ F-Score ↑ NC ↑

Non-metrical evaluation
iRBSM 2.06 ± 1.01 78.1 ± 16.97 98.6 ± 1.46

Ours w\o Lanc 1.74 ± 0.65 86.0 ± 11.17 99.2 ± 0.71

Ours 1.73 ± 0.65 86.1 ± 11.15 99.2 ± 0.70

Metrical evaluation
—– Exact metrical —————————————————–
iRBSM 2.28 ± 0.65 70.1 ± 12.36 98.5 ± 1.34

Ours w\o Lanc 1.97 ± 0.51 76.5 ± 10.86 99.0 ± 0.75

Ours 1.96 ± 0.47 76.7 ± 10.05 99.0 ± 0.68

—– Approximate metrical ——————————————–
iRBSM 2.30 ± 0.77 70.0 ± 13.60 98.5 ± 1.34

Ours w\o Lanc 1.98 ± 0.47 76.2 ± 10.84 99.0 ± 0.75

Ours 1.97 ± 0.47 76.4 ± 10.00 99.0 ± 0.68

Table 5: Quantitative results for 3D surface reconstruc-
tion from monocular RGB videos. The proposed pipeline
in combination with our new model performs best.

et al., 2019) and apply landmark-based Procrustes align-
ment to align the reconstructed surface to the ground truth
3D breast scan, followed by an iterative closest point (ICP)
algorithm. Similar to (Zielonka et al., 2022), we evaluate
performance under two settings, non-metrical and metrical.
In the non-metrical setting, we disregard the fact that our
method produces metrically correct 3D reconstructions and
allow the Procrustes and ICP steps to estimate a global
scaling factor in addition to rotation and translation. In
the metrical setting, we respect the real-world scale of the
method’s output, restricting alignment to be purely rigid
(only rotation and translation). Once aligned, evaluation
metrics are computed as described above. Metrics obtained
from the non-metrical evaluation measure the true discrep-
ancy between reconstructed and ground truth geometry,
whereas numbers obtained from the metrical evaluation
better reflect the overall reconstruction quality when results
are to be used within a real-world application that requires
a metrical context (such as breast volume estimation, for
example). We use λ = 0.1 during surface fitting and further
employ the anchor loss in Eq. (7), weighted with 0.1, as
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Figure 7: Qualitative results for surface reconstruction from monocular RGB videos. We show surface reconstruc-
tions obtained from fitting the iRBSM and our model to point clouds acquired by applying SfM to monocular RGB
videos. In contrast to the iRBSM, our model is capable of recovering fine anatomical details such as skin folds (1st
column) and nipples (5th and 8th columns), and is generally better at inferring the correct underlying shape, as seen in
the remaining columns.

we found that this slightly improves our reconstructions.
Results are shown in Table 5, obtained by extracting

30 frames from the input video over time. The introduced
pipeline in combination with the proposed model is able to
recover accurate 3D breast surfaces, reaching a CD of less
than 2 mm in the metrical setting compared to 2.3 mm
when using the iRBSM for surface reconstruction. This
improvement is also evident visually, as shown in Figure
7. Our model yields high-fidelity 3D surface reconstruc-
tions, successfully capturing even fine anatomical details
such as skin folds and nipples. Moreover, the point clouds
obtained via SfM appear remarkably accurate, despite the
relatively low quality of the extracted video frames, which
suffer from noise and suboptimal lighting during capture.
We attribute this robustness to VGGSfM’s learning-based
approach, as we found that traditional methods such as
COLMAP (Schönberger and Frahm, 2016) produce signifi-
cantly noisier and sparser point clouds, even after moder-
ate parameter tuning. Interestingly, when using our first
strategy to obtain real-world scale reconstructions (which
requires the measurement of an additional landmark dis-
tance on the real subject), CD decreases only by 0.01 mm,
suggesting that approximate metrical reconstructions are
sufficient in practice.

4.3.1 Ablations

Sensitivity to Landmark Selection. We test how sensi-
tive our reconstruction pipeline is regarding the selection

of the six 2D landmarks required for aligning the SfM-
generated point cloud to our model’s mean shape. To this
end, we added varying amounts of noise to the ground
truth landmark positions (simulated as random perturba-
tions drawn from a discrete uniform distribution in range
{−k, . . . , −1, 0, 1, . . . , k} pixels, where k ∈ {5, 10, 20, 30})
and run our pipeline. We repeated this procedure ten times
for each noise level and all subjects in our test dataset. The
results in Figure 8 demonstrate that uncertainty in the land-
mark selection process of up to 10 pixels—corresponding
to a spherical uncertainty region with ∼5 mm radius in
real-world around each landmark—has a negligible impact
on reconstruction quality, with CD rising only slightly from
1.97 mm (no noise) to 2.1 mm. Beyond this point, CD
increases steadily, reaching about 2.3 mm at 30 pixels of
noise, which corresponds to an uncertainty region with a
radius of about 14 mm. The increasing standard deviation
further suggests that individual reconstructions become
increasingly susceptible to noise.

Number of Views vs. Reconstruction Quality and Run-
time. We further evaluate how reconstruction accuracy
and runtime of our pipeline is affected by the number of
views extracted from the input video. Since our method
recovers 3D surfaces by fitting onto point clouds generated
by SfM, the number and quality of input views directly
impact the final 3D reconstruction results. As shown in
Figure 9, VGGSfM reliably estimates camera poses and pro-
duces sufficiently accurate point clouds even with as few as
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Figure 8: Sensitivity to landmark selection. We test how
sensitive our reconstruction pipeline is against noise in the
2D landmark selection process. Our method is quite robust,
leaving reconstruction quality nearly unchanged up to an
uncertainty of 10 pixels.

ten input images, achieving a CD of already 2.3 mm when
evaluating the reconstructed surface. Adding more views
consistently improves reconstruction quality, peaking at 30
images. Beyond this point, performance slightly declines,
as the inclusion of additional (low-quality) frames into SfM
inevitably introduces more noise, leading to stagnation or
a mild decrease in reconstruction quality. We also tested
our method in a few-shot setting, using only three input
frames, matching the number of images required by the
commercial Vectra H2 system. While the reconstruction
quality is quantitatively reduced, the error remains below 3
mm, and the visual results are still compelling, see Appendix
D. Finally, we observe that the runtime—measured only for
the SfM step, as this is the primary bottleneck (the rest
of the pipeline completes in under a minute)—increases
linearly with the number of input images, remaining by
about six minutes for 30 images. Please note that, while
VGGSfM is generally reported to be faster (Wang et al.,
2024a), our adapted parameter settings lead to slightly
longer runtimes. We refer to Appendix E for a detailed
discussion on how these parameters influence reconstruction
quality and runtime.

5. Limitations and Future Work

While the introduced model and 3D reconstruction pipeline
represent a significant step toward making 3D parametric
breast models and reconstruction methods more expres-
sive, accurate, and accessible, they still come with certain
limitations and opportunities for further improvement.

First, due to the lack of automatic landmark detection
algorithms specifically designed for the female breast, our
surface reconstruction pipeline currently requires manual
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Figure 9: Number of views vs. reconstruction quality
and runtime. We ablate the number of frames extracted
from the input video and fed into our 3D reconstruction
pipeline. We found that, in our setting, 30 images work
best, being the ideal trade-off between speed and accuracy.

annotation of six anatomical landmarks in a single image.
Although this process usually takes no more than five sec-
onds, once such automatic landmarking methods become
available, they can be seamlessly integrated into our pipeline,
enabling fully automated surface reconstruction. Further-
more, such landmarking algorithms would not only make our
surface reconstruction pipeline easier to use, but also more
accurate, as back-projecting 2D landmarks from just one
image is less precise than triangulating landmarks selected
in every image. However, since no suitable automatic land-
marking methods are currently available, manually annotat-
ing landmarks in every image would be very time-consuming
and infeasible during daily clinical routine. Therefore, we
opted for a practical trade-off between speed, ease of use,
and accuracy by requiring manual landmark annotation only
once in a single image. Moreover, it is important to note
that our current approach of back-projecting landmarks via
closest point searches yields accurate results only if the
SfM-generated point cloud is sufficiently dense. We did
not encounter issues in practice, as VGGSfM reliably recon-
structs dense point clouds even from low-texture images,
typically containing well over 5,000 points.

Second, our model occasionally struggles to precisely
reconstruct the arms. This limitation arises from the fact
that we did not model arms as articulated body parts, and
the presented pose variability in the training data is simply
not enough for the model to generalize across a wide range
of arm positions. A potential solution would be to model
the thorax as an articulated body as in (Palafox et al.,
2021), for instance. However, this would require a dataset
containing 3D breast scans in a canonical pose, along with
additional scans of the same subjects captured in diverse
arm positions. Such data that is currently unavailable and
also not easy to acquire in routine clinical practice.
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Finally, in future work, we plan to further evaluate
the proposed surface reconstruction pipeline in a medical
setting and a larger cohort, following common practice and
assessing reconstruction quality in terms of breast volume
and anthropometric measurements.

6. Conclusion

In this work, we have presented a state-of-the-art neural
parametric 3D breast shape model, together with a low-cost
and accessible surface reconstruction pipeline that accu-
rately recovers metrically correct 3D breast geometry in
minutes from a single monocular RGB video. Our approach
requires neither specialized hardware nor proprietary soft-
ware and can be used with any device capable of capturing
RGB videos. At the core of our method lies an off-the-shelf
differentiable SfM pipeline combined with robust model-
based surface reconstruction. Unlike the existing iRBSM,
which models breast geometry using a single global neural
SDF, our model adopts a space partitioning strategy from
state-of-the-art face models: the implicit breast domain is
decomposed into multiple smaller regions, each represented
by a local SDF anchored at anatomical landmark positions.
When integrated into our reconstruction pipeline, the pro-
posed model, dubbed localized iRBSM or liRBSM for short,
achieves a significantly higher level of detail compared to
the iRBSM, precisely recovering breast surfaces within a
less than 2 mm error margin, and even capturing fine details
such as skin folds and nipples. Both our model and the
surface reconstruction pipeline are publicly available, and
we hope this encourages clinicians and other researchers
to further develop affordable, accessible, and open-source
breast reconstruction methods. Openly sharing tools and
data remains rare in this field, and we aim to help fos-
ter greater transparency and collaboration in breast shape
modeling and reconstruction research.
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method of outcome assessment in breast reconstruction
surgery: comparison of autologous and alloplastic tech-
niques using three-dimensional surface imaging. Aesthetic
Plast Surg, 44:1980–1987, 2020.

Robin Hartmann, Maximilian Weiherer, Daniel Schiltz,
Magnus Baringer, Vivien Noisser, Vanessa Hösl, An-
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Konstantin C. Koban, Felix Härtnagl, Virginia Titze, Thilo L.
Schenck, and Riccardo E. Giunta. Chances and limitations
of a low-cost mobile 3d scanner for breast imaging in
comparison to an established 3d photogrammetric system.
JPRAS, 71:1417–1423, 2018.

Laszlo Kovacs, Maximilian Eder, Regina Hollweck, Alexan-
der Zimmermann, Markus Settles, Armin Schneider,
Matthias Endlich, Andreas Mueller, Katja Schwenzer-
Zimmerer, Nikolaos A. Papadopulos, and Edgar Biemer.
Comparison between breast volume measurement using
3d surface imaging and classical techniques. The Breast,
16:137–145, 2007.

Ioannis Kyriazidis, Juan Enrique Berner, Karl Waked, and
Moustapha Hamdi. 3d breast scanning in plastic surgery

utilizing free iphone lidar application: Evaluation, poten-
tial, and limitations. Aesthet Surg J, 45:NP99–NP104,
2025.
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Appendix A. Definition of Metrics

We compute metrics between the ground truth 3D breast
scan and reconstruction by sampling 100k points and cor-
responding surface normals from the respective meshes,
denoted as Xgt, Ngt ⊂ R3 and Xrec, Nrec ⊂ R3.

Chamfer Distance. The Chamfer distance (CD) is de-
fined as

1
2(Comp. + Acc.), (14)

where

Comp. = 1
|Xgt|

∑
xgt∈Xgt

min
xrec∈Xrec

∥xgt − xrec∥, (15)

Acc. = 1
|Xrec|

∑
xrec∈Xrec

min
xgt∈Xgt

∥xrec − xgt∥. (16)

F-Score. The F-Score is given by
2 · Precision · Recall
Precision + Recall , (17)

where

Precision =
|{xrec ∈ Xrec : minxgt∈Xgt ∥xgt − xrec∥ < ξ}|

|Xrec|
,

(18)

Recall = |{xgt ∈ Xgt : minxrec∈Xrec ∥xrec − xgt∥ < ξ}|
|Xgt|

.

(19)
We use ξ = 2.5 mm for all of our experiments.

Normal Consistency. The normal consistency (NC) is
computed as

1
2

 ∑
xgt∈Xgt

|⟨ngt, nrec(xgt)⟩| +
∑

xrec∈Xrec

|⟨nrec, ngt(xrec)⟩|

 ,

(20)
where nrec(xgt) denotes the surface normal at the closest
point of xgt in Xrec. Similarly, ngt(xrec) denotes the surface
normal at the closest point of xrec in Xgt.

Appendix B. Additional Results for Intrinsic
Model Evaluation

Here, we provide results for the experiment described in
Section 4.1 of the main paper, which investigates the influ-
ence of the number of input points during surface fitting
on clean point clouds.

Figures 10 and 11 show quantitative and qualitative
results, respectively.

Appendix C. Qualitative Results for Ablations

We provide accompanying qualitative results in Figure 12
corresponding to the ablation study presented in Section
4.2 of the main paper.
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Figure 10: Surface fitting under varying point densities.
We investigate the influence of the number of input points
used during surface fitting. Our model outperforms the
iRBSM across all input densities, with reconstruction quality
improving as more points are provided. Higher is better.

Figure 11: Qualitative results for surface fitting under
varying point densities. Comparison of surface reconstruc-
tions obtained with the iRBSM and our model when fitted
to point clouds of varying densities.

Appendix D. Qualitative Results for Varying
Number of Views

We report qualitative results for the ablation study on the
number of input views to our 3D surface reconstruction
pipeline (see Section 4.3.1 of the main paper) in Figure 13.

Appendix E. Discussion On VGGSfM Parameters

As briefly mentioned in Section 4.3.1 of the main paper,
VGGSfM’s runtime is actually reported to be faster (Wang
et al., 2024a) compared to what we state in our paper,
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Figure 12: Qualitative results for the ablation on anchor layout and latent dimensions. Again, numbers in
parentheses represent global, local, and total latent dimension, i.e., (Lglob | Lloc; L).

Figure 13: Surface reconstruction from monocular RGB
videos under varying number of views. We show surface
reconstructions obtained by varying the number of extracted
input views to our pipeline.

which is due to an adapted parameter. VGGSfM essentially
has two parameters that mainly influence the reconstruc-
tion result: query frame num and max query pts (per
default set to 3 and 2,048). We found that increasing
max query pts to 8,196 significantly improves surface re-
construction quality. In Table 6, we provide a small ablation
on the two parameters to justify our adaptation.

Generally, we observe that both parameters lead to
improved surface reconstructions but longer runtimes when

increased up to a certain point. Specifically, although
a query frame num of 7 and setting max query pts to
8,192 leads to the overall best result, due to the long
runtime (almost 15 minutes), we decided against using this
configuration and chose instead the best trade-off between
speed and accuracy, which is the default query frame num
of 3 and max query pts of 8,192.

CD ↓ Runtime ↓

3 | 2,048 3.06 1.56
3 | 4,096 2.08 3.05
3 | 8,192 1.97 6.11
3 | 16,384 2.39 11.70
5 | 4,096 2.07 4.96
5 | 8,192 1.97 10.24
7 | 4,096 2.04 6.95
7 | 8,192 1.93 14.47

Table 6: Ablation on VGGSfM parameters. Numbers
represent query frame num and max query pts. Runtime
given in minutes. We underline the configuration we have
used for our experiments.
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